科家已一光合作用的“量子”@PEREGRINE科滴|PChome Online 人新台
2024-01-16 20:20:59| 人42| 回0 | 上一篇 | 下一篇

科家已一光合作用的“量子”

0 收藏 0 0 站台

 

1. 一新研究已揭露一,在捕光的合II (LHCII)中,高效光合作用至重要的量子制。透先之低子微(cryo-EMCryogenic electron microscopy),及理算得的,了LHCII在植物能量移中的角色。

A new study has revealed a quantum switching mechanism in Light-harvesting complex II (LHCII), crucial for efficient photosynthesis. This discovery, achieved through advanced cryo-EM and theoretical calculations, confirms LHCII’s dynamic role in regulating energy transfer in plants.

 

Photosynthesis is a vital process enabling plants to transform carbon dioxide into organic compounds using sunlight. The Light-harvesting complex II (LHCII) consists of pigment molecules attached to proteins.

光合作用是使植物能利用光,二氧化碳化成有化合物的重要程。捕光的合II (LHCII),由附著於蛋白上的色素分子成。

 

It alternates between two primary roles: when under intense light, it dissipates excess energy as heat through nonphotochemical quenching, and under low light, it efficiently transfers light to the reaction center.

它在主要角色交替:在光下,它透非光化猝,以量形式消散多的能量。在弱光下,它有效地光移到反中心。

 

Recent bioengineering research has revealed that speeding up the switch between these functions can boost photosynthetic efficiency. For instance, soybean crops have shown yield increases of up to 33%. However, the precise atomic-level structural changes in LHCII that trigger this regulation were previously unknown.

最近的生物工程研究已揭露,加速於此些功能之的,能提高光合作用的效率。譬如,大豆作物已,量增加33%。然而,於LHCII 中,此的精原子化,先前是不的。

 

 

2. 非光化猝(NPQNon-Photochemical Quenching)之分子制及在一些因素中,LHCII三聚,於捕光能量猝切之酸度的化。

Molecular mechanism of NPQ and acidity-induced changes in some key structural factors drive the LHCII trimer to switch between light-harvesting and energy-quenching states.

 

ln a new study, researchers led by Prof. Weng Yuxiang from the Institute of Physics of the Chinese Academy of Sciences, together with Prof. Gao Jiali’s group from Shenzhen Bay Laboratory, combined single-particle cryo-electron microscopy (cryo-EM) studies of dynamic structures of LHCII at atomic resolution with multistate density functional theory (MSDFT) calculations of energy transfer between photosynthetic pigment molecules to identify the photosynthetic pigment quantum switch for intermolecular energy transfer.

在一新研究中,由中科院物理研究所Weng Yuxiang教授的研究人,同自深圳室Gao Jiali教授的合了,LHCII於原子分辨率下,之粒子低子微(cryo-EM)的研究,光合色素分子之能量移之多性密度泛函理(MSDFT)的算。(密度泛函理是算原子、分子及固子的成功理)

 

As part of their work, they reported a series of six cryo-EM structures, including the energy transfer state with LHCII in solution and the energy quenching state with laterally confined LHCII in membrane nanodiscs under both neutral and acidic conditions.

作他研究的一部分,他提出了六低子微的一系列告,包括在溶液中,具有LHCII的能量移,及在中性及酸性情下,於膜奈米中,具有遭向限制之LHCII的能量猝。

 

Comparison of these different structures shows that LHCII undergoes a conformational change upon acidification. This change allosterically alters the inter-pigment distance of the fluorescece quenching locus Lutein1 (Lut1)–Chlorophyll612 (Chl612) only when LHCII is confined in membrane nanodiscs, leading to the quenching of excited Chl612 by Lut1.

此些不同的比示,LHCII在酸化一象化。此化,LHCII被限制於膜奈米(一合成模型膜的蛋白)中,才性地改光猝位,素1(Lut1)–素612(Chl612)色素之的距。致被激的Chl612Lut1猝。

 

Thus, LHCII confined with lateral pressure (e.g., aggregated LHCII) is a prerequisite for non-photochemical quenching (NPQ), whereas acid-induced conformational change enhances fluorescence quenching.

因此,遭限制的LHCII(譬如,聚集的LHCII)是非光化猝(NPQ)的一先件。而酸的象化,增了光猝。

 

 

3. LHCII於奈米(蛋白)pH 7.85.4洗溶液中之低子微的。

Cryo-EM structures for LHCII in nanodisc and in detergent solution at pH 7.8 and 5.4.

 

Through MSDFT calculations of cryo-EM structures and the known crystal structure in quenched states, together with transient fluorescence experiments, a significant quantum switching mechanism of LHCII has been revealed with Lut1–Chl612 distance as the key factor.

透低子微的及,在猝中,已知之晶的多性密度泛函理(MSDFT)算,同瞬光,以Lut1-Chl612之距因素,已揭露LHCII的一重要量子制。

 

This distance regulates the energy transfer quantum channel in response o the lateral pressure on LHCII and the conformational change, that is, a slight change at its critical distance of 5.6 Å would allow reversible switching between light harvesting and excess energy dissipation.

LHCII上的向力及象化作出反,此距了能量移量子通道。也就是,其界距5.6 Å的微小化能容,在光捕量能量耗散之的可逆切。

 

This mechanism enables a rapid response to changes in light intensity, ensuring both high efficiency in photosynthesis and balanced photoprotection with LHCII as a quantum switch.

此制使能光度的化,作出快速反。保了,在光合作用的高效率,及以LHCII作量子的平衡光保。

 

 

4. 於不同LHCII中,在光衰率、Lut1-Chl612子耦合度Lut1-Chl612分距之的,及Lut1-Chl612距跨膜(TMTransmembrane )螺旋AB交叉角的。

The relationship between fluorescence decay rate, Lut1–Chl612 electronic coupling strength against Lut1–Chl612 separation distance, and plot of Lut1–Chl612 distance versus the crossing angle of TM helices A and B in different LHCII structures.

 

Previously, these two research groups had collaborated on molecular dynamics simulations and ultrafast infrared spectroscopy experiments and had proposed that LHCII is an allosterically regulated molecular machine. Their current experimental cryo-EM structures confirm the previously theoretically predicted structural changes in LHCII.

先前,支研究曾,分子模及超快外光共同行研究,且曾提出LHCII是一性的分子作物。他前之低子微的,了先前理上所,在LHCII的化。

 

 

址:https://scitechdaily.com/scientists-have-discovered-a-quantum-switch-that-regulates-photosynthesis/

翻:

台: peregrine
人(42) | 回(0)| 推 (0)| 收藏 (0)|
全站分: 教育(修、留、研究、教育概)

是 (若未登入"人新台"看不到回覆唷!)
* 入:
入片中算式的果(可能0) 
(有*必填)
TOP
全文
ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86