一个关于主成分得分的讨论,稍具争议。请大佬指路。 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
huzhikuizainali
V2EX    数学

一个关于主成分得分的讨论,稍具争议。请大佬指路。

  •  
  •   huzhikuizainali 2022-02-24 15:18:33 +08:00 1731 次点击
    这是一个创建于 1403 天前的主题,其中的信息可能已经有所发展或是发生改变。
    请看下图,我在一篇论文中的确看到了应用主成分得分的方法对样本排序,当时就觉得很奇怪,为什么方差越大的主成分给的权重就越大,这样做的理论依据是什么?想达到什么目的?
    关于下图中的内容我有如下疑问,原文引用基本都来自书中划线部分。

    1 ,“ 而仅是体现在数据的变异性上,把反映数据变异性信息的前 m 个主成分线性组合起来将会瓦解主成分在变异性信息上的优势,”-----既然主成分反映了数据的变异性,为什么把它们线性组合起来,反而破坏了变异性上的优势?

    2 ,“ 这是因为,原始变量的含义是实在的、确切的,这是看懂和理解线性组合含义的基础;而主成分是人为定义、意义含糊的”----------我也有这种感觉,觉得主成分意义模糊。但是否有针对性的方法克服上述障碍呢?总不能让主成分分析的结果闲置吧。

    其次,大家是否有专门讨论“主成分分析结果如何应用”的书籍或文章推荐?(不涉及如何计算主成分)。




    摘自上海财经大学王学民老师应用多元统计分析
    bilberry
        1
    bilberry  
       2022-02-27 01:12:01 +08:00
    重新复习了上学期讲的 PCA ,说下我的理解。

    为什么方差越大的主成分给的权重就越大?
    多维数据求的是协方差矩阵,协方差矩阵分解,如使用奇异值分解,会得到特征向量和特征值,每个特征向量对应由特征值。空间坐标系中,特征向量所表示的是各个成分的方向,特征值表在各方向上的大小。这个时候,某个方向上的协方差越大,其特征值就越大,对应“方差越大的主成分给的权重就越大”,我是这么觉得。这就好比初中物理的受力分解,可以随机找点数据测试下。

    比如随便一个三维数据,x 分布[0,1],y 分布[0,5],z=0 ,分解后会发现 y 的特征值最大,z 的最小为 0 ,后面降维时 z 可以去掉,基本不会影响主成分。
    huzhikuizainali
        2
    huzhikuizainali  
    OP
       2022-02-27 09:58:30 +08:00
    如使用奇异值分解,会得到特征向量和特征值----------协方差矩阵是实对称矩阵。而且是个方阵。所以没必要用奇异值分解,直接正交对角化就可以得到特征值特征向量(特征值分解可以看成奇异值分解的特殊形式,既被分解的是一个方阵。而奇异值分解可以看成特征值分解的普遍形式,方阵非方阵都适用)

    某个方向上的协方差越大,其特征值就越大,---------你是不是想说方差越大就……。在某个方向上只有方差,只有不同方向间才有协方差,且 pca 后协方差=0

    对应“方差越大的主成分给的权重就越大”,---------书中批判的就是这种方法或者说是理念。认为这样做没有理论依据!
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2636 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 23ms UTC 09:48 PVG 17:48 LAX 01:48 JFK 04:48
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86