这段代码在 Python 里能怎么改写成效率更高的吗,听说 for 循环比较慢 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
zxCoder
V2EX    Python

这段代码在 Python 里能怎么改写成效率更高的吗,听说 for 循环比较慢

  •  
  •   zxCoder 2021-10-07 09:08:34 +08:00 6872 次点击
    这是一个创建于 1496 天前的主题,其中的信息可能已经有所发展或是发生改变。
     xs = [] ys = [] zs = [] for data in ls: _x, _y, _z = data xs.append(_x) ys.append(_y) zs.append(_z) 
    33 条回复    2021-10-10 11:38:52 +08:00
    fuis
        1
    fuis  
       2021-10-07 09:16:43 +08:00
    用 numpy

    xs = ls[:,0]
    ys = ls[:,1]
    zs = ls[:,2]
    fuis
        2
    fuis  
       2021-10-07 09:17:27 +08:00   1
    ls = numpy.array(ls)
    ChrisFreeMan
        3
    ChrisFreeMan  
       2021-10-07 09:24:41 +08:00
    等待 python3.11 版本,听说有一倍速度的提升
    zxCoder
        4
    zxCoder  
    OP
       2021-10-07 09:26:55 +08:00
    @fuis 不是数字呃,numpy 能处理非数字吗
    vcfghtyjc
        5
    vcfghtyjc  
       2021-10-07 09:31:18 +08:00
    不太清楚具体需求,也许可以让 xs,ys,zs 变成迭代器而不是 list ?
    unifier
        6
    unifier  
       2021-10-07 09:31:50 +08:00   1
    不考虑数组转 np array 的这个开销的话,1 楼的 numpy 确实非常快:

    Using numpy: 0.00000000s
    Using append: 0.36167359s


    加上转 np 的开销嘛,就不一样了:

    Using numpy: 1.69339228s
    Using append: 0.37969041s


    其实 append 还是挺快的,比非常 Pythonic 的*zip 的方法要快挺多了:
    Using *zip: 1.30143762s
    Using append: 0.39510083s


    参考:
    https://stackoverflow.com/questions/8081545/how-to-convert-list-of-tuples-to-multiple-lists
    catbaron
        7
    catbaron  
       2021-10-07 10:00:53 +08:00 via iPhone   1
    zip 怎么样
    fatestigma
        8
    fatestigma  
       2021-10-07 10:10:59 +08:00   3
    for 循环不知道怎么去掉,但是有一个提速的方法,list 初始化的时候带上长度
    xs = [None] * len(data)
    对于比较大的 list,可以快那么几十毫秒。。
    ch2
        9
    ch2  
       2021-10-07 10:14:25 +08:00
    用列表推导
    xs=[data[0] for data in ls]
    ys=[data[1] for data in ls]
    zs=[data[2] for data in ls]
    ch2
        10
    ch2  
       2021-10-07 10:18:14 +08:00
    用 map 运算
    xs = map(lambda data: data[0], ls)
    ys = map(lambda data: data[1], ls)
    zs = map(lambda data: data[2], ls)
    guoqiao
        11
    guoqiao  
       2021-10-07 10:40:02 +08:00
    @ch2 你这把一个循环变成了三个, 应该只会更慢吧
    WhoMercy
        12
    WhoMercy  
       2021-10-07 11:13:02 +08:00
    O(n)了还优化个啥
    fancy967
        13
    fancy967  
       2021-10-07 12:00:32 +08:00   1
    不知道怎么优化,不过代码可以精简一下
    for _x, _y, _z in ls:
    xs.append(_x)
    ys.append(_y)
    zs.append(_z)
    dangyuluo
        14
    dangyuluo  
       2021-10-07 12:02:14 +08:00
    C++程序员的思路:预先分配下内存防止移动?
    cyrbuzz
        15
    cyrbuzz  
       2021-10-07 12:39:46 +08:00   1
    你要全部遍历一遍,这个算法已经 O(n),除了直接提速 for 和 append,可以用另外一种思路,就是看你的 xs,ys,zs 的用处,用 yield 把它改成生成器,类似 python2 里 range 到 xrange 的改变。

    如果 ls 不变,进一步的优化可以加缓存,用 JSON 存到本地,第二次直接读取 JSON,虽然本身并没有优化到算法。
    MintZX
        16
    MintZX  
       2021-10-07 13:18:44 +08:00
    @zacharyjia 因为这个操作在 numpy 里面是 constant 的。。通过数据结构实现的。这也就是为什么你把 list 转成 np 的时间非常高的原因。当然了,你也可以试试看把处理好的 xs ys zs 再转成 list,还是很费时间。

    np 本身的 dataframe 非常复杂也非常大
    niubee1
        17
    niubee1  
       2021-10-07 13:25:51 +08:00   10
    其实是一个 90 度旋转二维数组的过程,用 Python 的内置函数实现应该会更快,因为毕竟底层是 C 。
    可以先 rotated = list(zip(*ls[::])) 旋转一下二维数组,再 xs.extend(rotated) .

    跑起来大概提高了一倍的速度

    https//imgur.com/e602lpH
    NoAnyLove
        18
    NoAnyLove  
       2021-10-07 13:28:28 +08:00
    @guoqiao Python 的优化就是有些反常识,3 个循环不一定比 1 个循环慢,具体还是看解释器怎么跑
    @dangyuluo 预分配内存在 Python 优化中通常效果不佳,因为通常不是主要因素

    如果 ls 足够长的话,比如 ls=[[i, i+1, i+2] for i in range(1, 98, 3)],那么这个版本可能更快一些,

    flat = list(itertools.chain.from_iterable(ls))
    xs = flat[::3]
    ys = flat[1::3]
    zs = flat[2::3]
    niubee1
        19
    niubee1  
       2021-10-07 13:28:37 +08:00   6
    NoAnyLove
        20
    NoAnyLove  
       2021-10-07 13:32:13 +08:00
    好吧,#17 我服了
    niubee1
        21
    niubee1  
       2021-10-07 13:35:14 +08:00
    @NoAnyLove 我测了一下,zip 稍快一些
    niubee1
        22
    niubee1  
       2021-10-07 13:36:30 +08:00
    niubee1
        23
    niubee1  
       2021-10-07 13:37:15 +08:00   2
    NoAnyLove
        24
    NoAnyLove  
      &nbp;2021-10-07 13:41:01 +08:00
    @niubee1 同意,你的版本更快,

    In [101]: def t1(ls):
    ...: flat = list(itertools.chain.from_iterable(ls))
    ...: xs = flat[::3]
    ...: ys = flat[1::3]
    ...: zs = flat[2::3]
    ...: return xs, ys, zs
    ...:

    In [102]: def t2(ls):
    ...: xs, ys, zs =list(zip(*ls))
    ...: return list(xs), list(ys), list(zs)

    In [113]: ls=[[i, i+1, i+2] for i in range(1, 98, 3)]

    In [114]: %timeit t1(ls)
    4.26 s ± 17.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

    In [115]: %timeit t2(ls)
    3.2 s ± 19.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
    niubee1
        25
    niubee1  
       2021-10-07 13:43:13 +08:00
    其实省掉 extend 过程,直接返回数组的话,还能再提高点性能
    niubee1
        26
    niubee1  
       2021-10-07 13:45:12 +08:00   2
    @NoAnyLove 其实大家思路都差不多,python 要提高效率的话,应该尽可能的使用内置函数
    NoAnyLove
        27
    NoAnyLove  
       2021-10-07 13:57:43 +08:00
    @niubee1 对,就是这个道理,内置函数底层执行更快
    shyrock
        28
    shyrock  
       2021-10-07 16:40:25 +08:00
    @niubee1 #19 学习了。
    wuwukai007
        29
    wuwukai007  
       2021-10-08 11:13:56 +08:00
    #19 楼 一行代码开启新世界
    princelai
        30
    princelai  
       2021-10-08 18:14:49 +08:00
    ```python
    def func4(ls):
    xs = list(islice(chain.from_iterable(ls), 0, None, 3))
    ys = list(islice(chain.from_iterable(ls), 1, None, 3))
    zs = list(islice(chain.from_iterable(ls), 2, None, 3))


    def func5(ls):
    xs = list(compress(chain.from_iterable(ls), cycle([1, 0, 0])))
    ys = list(compress(chain.from_iterable(ls), cycle([0, 1, 0])))
    zs = list(compress(chain.from_iterable(ls), cycle([0, 0, 1])))
    ```
    itertools 里的内置函数速度都还可以
    rationa1cuzz
        31
    rationa1cuzz  
       2021-10-09 09:39:44 +08:00
    @niubee1 ls[::] 是干嘛?我怎么看不懂啊,求教,另外为什么我测的是列表推导式更快一点,数量级越大越明显
    rationa1cuzz
        32
    rationa1cuzz  
       2021-10-09 09:48:52 +08:00
    @niubee1 另外,只有在 data=[(x,y,z),(x2,y2,z2,...)] 为元祖 zip 才会有明显速度优势,
    data[(x,y,z),(x2,y2,z2,...)] range(100000)
    for: spend_time:0.03163599967956543
    列表推导式:spend_time:0.012620925903320312
    zip: spend_time:0.0060007572174072266

    data[(x,y,z),(x2,y2,z2,...)] range(100000)
    for: spend_time:0.03195595741271973
    列表推导式:spend_time:0.012039899826049805
    zip: spend_time:0.016546964645385742
    htaoreg
        33
    htaoreg  
       2021-10-10 11:38:52 +08:00
    xs, ys, zs = zip(*ls)
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3034 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 42ms UTC 12:48 PVG 20:48 LAX 04:48 JFK 07:48
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86