elasticsearch IK 分词怎么无效呀? - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
dyllen
V2EX    Elasticsearch

elasticsearch IK 分词怎么无效呀?

  •  
  •   dyllen 2020-05-20 23:06:01 +08:00 3505 次点击
    这是一个创建于 1970 天前的主题,其中的信息可能已经有所发展或是发生改变。

    index test的 mapping 定义:

    "content": { "type": "text", "analyzer": "ik_smart" }, "title": { "type": "text", "analyzer": "ik_smart" } 

    测试分词:

    http://127.0.0.1:9200/_analyze

    提交参数:

    { "text": "中国美国英国", "analyzer": "ik_smart" } 

    返回

    { "tokens": [ { "token": "中国", "start_offset": 0, "end_offset": 2, "type": "CN_WORD", "position": 0 }, { "token": "美国", "start_offset": 2, "end_offset": 4, "type": "CN_WORD", "position": 1 }, { "token": "英国", "start_offset": 4, "end_offset": 6, "type": "CN_WORD", "position": 2 } ] } 

    _search 测试一下索引 test

    get body

    { "size": 20, "query": { "match": { "content": "广州人" } } } 

    返回:

    { "took": 0, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 0.84268904, "hits": [ { "_index": "dcc-speechcrafts", "_type": "dcc-speechcraft", "_id": "AXIyjmXuVhRXxkRgwNlT", "_score": 0.84268904, "_source": { "title": "", "content": "qefdygyrfh 广州人" } } ] } } 

    第二次_search 测试一下

    get body

    { "size": 20, "query": { "match": { "content": "广州" } } } 

    返回:

    { "took": 1, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 0, "max_score": null, "hits": [] } } 

    问题,我那条记录内容包含广州人这三个字,为什么分别用广州人广州两个词去查询,一次有结果,一次没结果呀?按道理用广州去查询应该也是返回一样的结果的呀,这什么问题?

    elasticsearch 5.6.16

    6 条回复    2020-05-21 10:14:00 +08:00
    fancy967
        1
    fancy967  
       2020-05-20 23:50:03 +08:00
    没有研究过 ik_smart 这个 analyzer,不过把广州人、qefdygyrfh 广州人和广州这个三个词放进_analyze 测试一下看返回的 token 能不能匹配上吗不就知道原因了吗
    misaka19000
        2
    misaka19000  
       2020-05-20 23:53:06 +08:00
    是不是人匹配了但是广州没匹配
    CoolSpring
        3
    CoolSpring  
       2020-05-21 08:58:14 +08:00   1
    https://github.com/medcl/elasticsearch-analysis-ik
    引用一下
    “ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合,适合 Term Query ;
    ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”,适合 Phrase 查询。”

    这里的问题应该是 ik_smart 在生成索引时只分出了“广州人”一个词,而根据倒排索引的原理用“广州”就搜不到了。
    网络上有一些文章的建议是,索引时用 ik_max_word,搜索时用 ik_smart 。(不过也有其他的坑例如 https://github.com/medcl/elasticsearch-analysis-ik/issues/584
    dyllen
        4
    dyllen  
    OP
       2020-05-21 09:52:25 +08:00
    @misaka19000 我用_analyze 测试了 ik_smart 分词,广州和广州人不会再分,就一个词
    dyllen
        5
    dyllen  
    OP
       2020-05-21 09:53:22 +08:00
    @CoolSpring 听你这样一说,我好像有点明白了,先去试试先。
    dyllen
        6
    dyllen  
    OP
       2020-05-21 10:14:00 +08:00
    @fancy967
    @dyllen

    明白了,还是不太了解 elasticsearch 导致的,设置成了索引时用 ik_max_word,搜索时用 ik_smart 。
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1165 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 30ms UTC 17:38 PVG 01:38 LAX 10:38 JFK 13:38
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86