震惊!大学生深夜做不出深度学习毕设嚎啕大哭 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
apostle
V2EX    机器学习

震惊!大学生深夜做不出深度学习毕设嚎啕大哭

  •  
  •   apostle 2020-05-08 10:44:14 +08:00 5457 次点击
    这是一个创建于 2011 天前的主题,其中的信息可能已经有所发展或是发生改变。

    卑微菜鸡在这里恳求各位图像视觉的大佬指点一下我,如何解决下面的 bug(有偿也可!欢迎留下联系方式)
    问题描述:毕设要做的是用 fcn 做显著性目标识别,大概过程就是用 fcn 做多分类的语义分割,然而结果输出却成了雪花状的图,虽然能看出大概的轮廓。训练过程中 loss 一直在抖动,范围在 0.4 到几之间,不收敛。

    自我感觉是在数据处理方面出了问题。 实验室的学姐也没有解决的思路,网上也查不到。迫不得已来 v2 恳求各位大佬。(有偿也可啊!)
    我的微信:sy971216200

    25 条回复    2025-07-09 17:48:50 +08:00
    apostle
        1
    apostle  
    OP
       2020-05-08 10:48:23 +08:00 via Android
    apostle
        2
    apostle  
    OP
       2020-05-08 10:49:30 +08:00 via Android
    apostle
        3
    apostle  
    OP
       2020-05-08 10:50:28 +08:00 via Android
    apostle
        4
    apostle  
    OP
       2020-05-08 10:53:48 +08:00 via Android
    bug403
        5
    bug403  
       2020-05-08 10:58:17 +08:00   4
    放弃吧,你不写今日头条号太浪费了,写头条号震惊体新闻,你早迎娶白富美了。
    epleone
        6
    epleone  
       2020-05-08 10:59:23 +08:00
    "自我感觉是在数据处理方面出了问题"
    你把数据处理结果可视化出来不就好了
    andantin0
        7
    andantin0  
       2020-05-08 11:06:30 +08:00   1
    同学,你训练的时候用的数据集样本量有多少?我看了一下那个 repo,网络挺深的,应该需要很大的数据量才能 train 吧,我其实也不太确定,但是是根据我个人经历感觉的,我之前 train 过一个倒置的 VGG16,就是做显著性检测的,然后样本只有 1k 左右,结果就和你那个图像差不多,都是雪花,我参考的原作他的样本数远远大于我的,我使用他的预训练模型就能顺利地输出正确结果,所以可以看看是不是样本量的问题
    apostle
        8
    apostle  
    OP
       2020-05-08 11:06:32 +08:00 via Android
    @bug403 不写震惊体吸引不了大佬
    apostle
        9
    apostle  
    OP
       2020-05-08 11:10:46 +08:00 via Android
    @epleone 其实数据处理是和源代码一样的 2333 感觉我头晕了 不知道哪里出了问题
    Cielsky
        10
    Cielsky  
       2020-05-08 11:11:59 +08:00 via Android
    @apostle UC 不招你亏了
    apostle
        11
    apostle  
    OP
       2020-05-08 11:12:50 +08:00 via Android
    @andantin0 大佬!我的确为了图方便只用 400 多张图迭代 10 次,然而我一直在怀疑我的数据处理或者模型的问题,没有想到这个!非常感谢!我这就去试一下
    w1573007
        12
    w1573007  
       2020-05-08 13:03:31 +08:00 via Android
    不收敛大概率是模型没有学习到东西,猜测是数据的问题。同时,也可能是数据量小,但模型比较庞大,这也会导致这个问题。一定要检查模型输入的张量是不是和开源程序一样
    sadfQED2
        13
    sadfQED2  
       2020-05-08 13:44:43 +08:00 via Android
    400 张图迭代 10 次也太少了吧?
    GDouble
        14
    GDouble  
       2020-05-08 14:05:53 +08:00 via iPhone
    本科还是研究生啊?
    ccromantic1412
        15
    ccromantic1412  
       2020-05-08 14:51:53 +08:00
    不太懂你 load 完数据以后 tensor2image 是啥操作……
    在 train loader 里面没有 transform,结果 test loader 里面又用了 transform,训练和测试阶段数据处理没统一
    ourgoder
        16
    ourgoder  
       2020-05-08 14:52:32 +08:00
    哈哈哈,楼主头条看多了吧
    wangzhangup
        17
    wangzhangup  
       2020-05-08 18:31:00 +08:00
    你这也太简单了吧。
    8G
        18
    8G  
       2020-05-10 03:15:22 +08:00 via iPhone
    同,我刚刚还在查重,哭了
    8G
        19
    8G  
       2020-05-10 03:18:36 +08:00 via iPhone
    https://github.com/nephashi/GaitRecognitionCNN/blob/master/layers/Conv2D121.py 想知道这个和普通的 Conv2D 有啥区别 我对比了一下,感觉差别不大,多了一些 def 不是很懂,有大佬帮忙看看吗
    YOUMA
        20
    YOUMA  
       2020-05-20 16:53:28 +08:00
    我也想知道这个和普通的 Conv2D 有啥区别
    8G
        21
    8G  
       2020-05-20 21:39:40 +08:00 via iPhone
    @YOUMA 我知道了,你应该 @我的。我是刚好回来看这个帖子。

    它是做了简化的操作,只接受 2D 的输入。会轻便很多。

    其中,自定义的一对一连接的自定义层,是基于 keras 源代码中卷积的部分编写的,采用的设计理念是参照了“Alotaibi2017A”论文中的描述,实现了一对一连接的自定义层。

    在自定义层的设计部分,将原来 keras 自带的卷积代码中删除了冗余的部分,只支持 2D 数据,然后对 input_dim (数据维度)输入进行切片并进行卷积。

    一对一连接,即每个 feature map 与上一层中的 feature map 之间的连接方式都是一对一,这种做法的优势在于通过减少参数的数量,达到大大的降低了计算成本,加快训练的速度的目的。同时,相比于数百万个参数的其他深层模型,我们所拥有的数据集体量相对较小,无法训练所有参数,否则可能会出现 over-fitting (即过度装配)的问题。

    在后续的实验中,我们可以清晰地看出模型能够快速且有效的收敛,恰恰是因为由于使用了一对一连接的方式,需要训练的参数数量较小(当然,这个一对一连接不包括全连接层)。
    YOUMA
        22
    YOUMA  
       2020-05-20 21:59:03 +08:00
    @8G
    耐斯
    8G
        23
    8G  
       2020-05-20 22:23:06 +08:00 via iPhone
    @YOUMA 我现在有点烦有些数据集的识别率不高,不管先了,查重过了,有机会读研再研究。
    alpha1155
        24
    alpha1155  
       2021-03-14 10:46:38 +08:00   1
    @8G xd 读到研了吗
    8G
        25
    8G  
       123 天前 via iPhone
    @alpha1155 毕业了
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1110 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 33ms UTC 17:24 PVG 01:24 LAX 09:24 JFK 12:24
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86