
我们通过 kubectl describe [资源] 命令,可以在看到 Event 输出,并且经常依赖 event 进行问题定位,从 event 中可以分析整个 POD 的运行轨迹,为服务的客观测性提供数据来源,由此可见,event 在 Kubernetes 中起着举足轻重的作用。

event 并不只是 kubelet 中都有的,关于 event 的操作被封装在client-go/tools/record包,我们完全可以在写入自定义的 event。
其实 event 也是一个资源对象,并且通过 apiserver 将 event 存储在 etcd 中,所以我们也可以通过 kubectl get event 命令查看对应的 event 对象。
以下是一个 event 的 yaml 文件:
apiVersion: v1 count: 1 eventTime: null firstTimestamp: "2020-03-02T13:08:22Z" involvedObject: apiVersion: v1 kind: Pod name: example-foo-d75d8587c-xsf64 namespace: default resourceVersion: "429837" uid: ce611c62-6c1a-4bd8-9029-136a1adf7de4 kind: Event lastTimestamp: "2020-03-02T13:08:22Z" message: Pod sandbox changed, it will be killed and re-created. metadata: creationTimestamp: "2020-03-02T13:08:30Z" name: example-foo-d75d8587c-xsf64.15f87ea1df862b64 namespace: default resourceVersion: "479466" selfLink: /api/v1/namespaces/default/events/example-foo-d75d8587c-xsf64.15f87ea1df862b64 uid: 9fe6f72a-341d-4c49-960b-e185982d331a reason: SandboxChanged reportingComponent: "" reportingInstance: "" source: component: kubelet host: minikube type: Normal **
主要字段说明:
event 字段定义可以看这里:types.go#L5078
接下来我们来看看,整个 event 是如何下入的。
1、这里以 kubelet 为例,看看是如何进行事件写入的
2、文中代码以 Kubernetes 1.17.3 为例进行分析
先以一幅图来看下整个的处理流程 
创建操作事件的客户端:
kubelet/app/server.go#L461
// makeEventRecorder sets up kubeDeps.Recorder if it's nil. It's a no-op otherwise. func makeEventRecorder(kubeDeps *kubelet.Dependencies, nodeName types.NodeName) { if kubeDeps.Recorder != nil { return } //事件广播 eventBroadcaster := record.NewBroadcaster() //创建 EventRecorder kubeDeps.Recorder = eventBroadcaster.NewRecorder(legacyscheme.Scheme, v1.EventSource{Component: componentKubelet, Host: string(nodeName)}) //发送 event 至 log 输出 eventBroadcaster.StartLogging(klog.V(3).Infof) if kubeDeps.EventClient != nil { klog.V(4).Infof("Sending events to api server.") //发送 event 至 apiserver eventBroadcaster.StartRecordingToSink(&v1core.EventSinkImpl{Interface: kubeDeps.EventClient.Events("")}) } else { klog.Warning("No api server defined - no events will be sent to API server.") } } 通过 makeEventRecorder 创建了 EventRecorder 实例,这是一个事件广播器,通过它提供了 StartLogging 和 StartRecordingToSink 两个事件处理函数,分别将 event 发送给 log 和 apiserver。NewRecorder创建了 EventRecorder 的实例,它提供了 Event ,Eventf 等方法供事件记录。
我们来看下 EventBroadcaster 接口定义:event.go#L113
// EventBroadcaster knows how to receive events and send them to any EventSink, watcher, or log. type EventBroadcaster interface { // StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface StartRecordingToSink(sink EventSink) watch.Interface StartLogging(logf func(format string, args ...interface{})) watch.Interface NewRecorder(scheme *runtime.Scheme, source v1.EventSource) EventRecorder Shutdown() } 具体实现是通过 eventBroadcasterImpl struct 来实现了各个方法。
其中 StartLogging 和 StartRecordingToSink 其实就是完成了对事件的消费,EventRecorder 实现对事件的写入,中间通过 channel 实现了生产者消费者模型。
EventRecorder我们先来看下EventRecorder 接口定义:event.go#L88,提供了一下 4 个方法
// EventRecorder knows how to record events on behalf of an EventSource. type EventRecorder interface { // Event constructs an event from the given information and puts it in the queue for sending. // 'object' is the object this event is about. Event will make a reference-- or you may also // pass a reference to the object directly. // 'type' of this event, and can be one of Normal, Warning. New types could be added in future // 'reason' is the reason this event is generated. 'reason' should be short and unique; it // should be in UpperCamelCase format (starting with a capital letter). "reason" will be used // to automate handling of events, so imagine people writing switch statements to handle them. // You want to make that easy. // 'message' is intended to be human readable. // // The resulting event will be created in the same namespace as the reference object. Event(object runtime.Object, eventtype, reason, message string) // Eventf is just like Event, but with Sprintf for the message field. Eventf(object runtime.Object, eventtype, reason, messageFmt string, args ...interface{}) // PastEventf is just like Eventf, but with an option to specify the event's 'timestamp' field. PastEventf(object runtime.Object, timestamp metav1.Time, eventtype, reason, messageFmt string, args ...interface{}) // AnnotatedEventf is just like eventf, but with annotations attached AnnotatedEventf(object runtime.Object, annotations map[string]string, eventtype, reason, messageFmt string, args ...interface{}) } 主要参数说明:
object 对应 event 资源定义中的 involvedObjecteventtype 对应 event 资源定义中的 type,可选 Normal,Warning.reason :事件原因message :事件消息我们来看下当我们调用 Event(object runtime.Object, eventtype, reason, message string) 的整个过程。
发现最终都调用到了 generateEvent 方法:event.go#L316
func (recorder *recorderImpl) generateEvent(object runtime.Object, annotations map[string]string, timestamp metav1.Time, eventtype, reason, message string) { ..... event := recorder.makeEvent(ref, annotations, eventtype, reason, message) event.Source = recorder.source go func() { // NOTE: events should be a non-blocking operation defer utilruntime.HandleCrash() recorder.Action(watch.Added, event) }() } 最终事件在一个 goroutine 中通过调用 recorder.Action 进入处理,这里保证了每次调用 event 方法都是非阻塞的。
其中 makeEvent 的作用主要是构造了一个 event 对象,事件 name 根据 InvolvedObject 中的 name 加上时间戳生成:
注意看:对于一些非 namespace 资源产生的 event,event 的 namespace 是 default
func (recorder *recorderImpl) makeEvent(ref *v1.ObjectReference, annotations map[string]string, eventtype, reason, message string) *v1.Event { t := metav1.Time{Time: recorder.clock.Now()} namespace := ref.Namespace if namespace == "" { namespace = metav1.NamespaceDefault } return &v1.Event{ ObjectMeta: metav1.ObjectMeta{ Name: fmt.Sprintf("%v.%x", ref.Name, t.UnixNano()), Namespace: namespace, Annotations: annotations, }, InvolvedObject: *ref, Reason: reason, Message: message, FirstTimestamp: t, LastTimestamp: t, Count: 1, Type: eventtype, } } 进一步跟踪Action方法,apimachinery/blob/master/pkg/watch/mux.go#L188:23
// Action distributes the given event among all watchers. func (m *Broadcaster) Action(action EventType, obj runtime.Object) { m.incoming <- Event{action, obj} } 将 event 写入到了一个 channel 里面。
注意:
这个 Action 方式是apimachinery包中的方法,因为实现的 sturt recorderImpl
将 *watch.Broadcaster 作为一个匿名 struct,并且在 NewRecorder 进行 Broadcaster 赋值,这个Broadcaster其实就是 eventBroadcasterImpl 中的Broadcaster。
到此,基本清楚了 event 最终被写入到了 Broadcaster 中的 incoming channel 中,下面看下是怎么进行消费的。
在 makeEventRecorder 调用的 StartLogging 和 StartRecordingToSink 其实就是完成了对事件的消费。
StartLogging直接将 event 输出到日志StartRecordingToSink将事件写入到 apiserver两个方法内部都调用了 StartEventWatcher 方法,并且传入一个 eventHandler 方法对 event 进行处理
func (e *eventBroadcasterImpl) StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface { watcher := e.Watch() go func() { defer utilruntime.HandleCrash() for watchEvent := range watcher.ResultChan() { event, ok := watchEvent.Object.(*v1.Event) if !ok { // This is all local, so there's no reason this should // ever happen. continue } eventHandler(event) } }() return watcher } 其中 watcher.ResultChan 方法就拿到了事件,这里是在一个 goroutine 中通过func (m *Broadcaster) loop() ==>func (m *Broadcaster) distribute(event Event) 方法调用将 event 又写入了broadcasterWatcher.result
主要看下 StartRecordingToSink 提供的的eventHandler, recordToSink 方法:
func recordToSink(sink EventSink, event *v1.Event, eventCorrelator *EventCorrelator, sleepDuration time.Duration) { // Make a copy before modification, because there could be multiple listeners. // Events are safe to copy like this. eventCopy := *event event = &eventCopy result, err := eventCorrelator.EventCorrelate(event) if err != nil { utilruntime.HandleError(err) } if result.Skip { return } tries := 0 for { if recordEvent(sink, result.Event, result.Patch, result.Event.Count > 1, eventCorrelator) { break } tries++ if tries >= maxTriesPerEvent { klog.Errorf("Unable to write event '%#v' (retry limit exceeded!)", event) break } // Randomize the first sleep so that various clients won't all be // synced up if the master goes down. // 第一次重试增加随机性,防止 apiserver 重启的时候所有的事件都在同一时间发送事件 if tries == 1 { time.Sleep(time.Duration(float64(sleepDuration) * rand.Float64())) } else { time.Sleep(sleepDuration) } } } 其中 event 被经过了一个 eventCorrelator.EventCorrelate(event) 方法做预处理,主要是聚合相同的事件(避免产生的事件过多,增加 etcd 和 apiserver 的压力,也会导致查看 pod 事件很不清晰)
下面一个 for 循环就是在进行重试,最大重试次数是 12 次,调用 recordEvent 方法才真正将 event 写入到了 apiserver。
我们来看下EventCorrelate方法:
// EventCorrelate filters, aggregates, counts, and de-duplicates all incoming events func (c *EventCorrelator) EventCorrelate(newEvent *v1.Event) (*EventCorrelateResult, error) { if newEvent == nil { return nil, fmt.Errorf("event is nil") } aggregateEvent, ckey := c.aggregator.EventAggregate(newEvent) observedEvent, patch, err := c.logger.eventObserve(aggregateEvent, ckey) if c.filterFunc(observedEvent) { return &EventCorrelateResult{Skip: true}, nil } return &EventCorrelateResult{Event: observedEvent, Patch: patch}, err } 分别调用了 aggregator.EventAggregate ,logger.eventObserve , filterFunc 三个方法,分别作用是:
aggregator.EventAggregate:聚合 event,如果在最近 10 分钟出现过 10 个相似的事件(除了 message 和时间戳之外其他关键字段都相同的事件),aggregator 会把它们的 message 设置为 (combined from similar events)+event.Messagelogger.eventObserve:它会把相同的事件以及包含 aggregator 被聚合了的相似的事件,通过增加 Count 字段来记录事件发生了多少次。filterFunc: 这里实现了一个基于令牌桶的限流算法,如果超过设定的速率则丢弃,保证了 apiserver 的安全。我们主要来看下aggregator.EventAggregate方法:
func (e *EventAggregator) EventAggregate(newEvent *v1.Event) (*v1.Event, string) { now := metav1.NewTime(e.clock.Now()) var record aggregateRecord // eventKey is the full cache key for this event //eventKey 是将除了时间戳外所有字段结合在一起 eventKey := getEventKey(newEvent) // aggregateKey is for the aggregate event, if one is needed. //aggregateKey 是除了 message 和时间戳外的字段结合在一起,localKey 是 message aggregateKey, localKey := e.keyFunc(newEvent) // Do we have a record of similar events in our cache? e.Lock() defer e.Unlock() //从 cache 中根据 aggregateKey 查询是否存在,如果是相同或者相类似的事件会被放入 cache 中 value, found := e.cache.Get(aggregateKey) if found { record = value.(aggregateRecord) } //判断上次事件产生的时间是否超过 10 分钟,如何操作则重新生成一个 localKeys 集合(集合中存放 message ) maxInterval := time.Duration(e.maxIntervalInSeconds) * time.Second interval := now.Time.Sub(record.lastTimestamp.Time) if interval > maxInterval { record = aggregateRecord{localKeys: sets.NewString()} } // Write the new event into the aggregation record and put it on the cache //将 locakKey 也就是 message 放入集合中,如果 message 相同就是覆盖了 record.localKeys.Insert(localKey) record.lastTimestamp = now e.cache.Add(aggregateKey, record) // If we are not yet over the threshold for unique events, don't correlate them //判断 localKeys 集合中存放的类似事件是否超过 10 个, if uint(record.localKeys.Len()) < e.maxEvents { return newEvent, eventKey } // do not grow our local key set any larger than max record.localKeys.PopAny() // create a new aggregate event, and return the aggregateKey as the cache key // (so that it can be overwritten.) eventCopy := &v1.Event{ ObjectMeta: metav1.ObjectMeta{ Name: fmt.Sprintf("%v.%x", newEvent.InvolvedObject.Name, now.UnixNano()), Namespace: newEvent.Namespace, }, Count: 1, FirstTimestamp: now, InvolvedObject: newEvent.InvolvedObject, LastTimestamp: now, //这里会对 message 加个前缀:(combined from similar events): Message: e.messageFunc(newEvent), Type: newEvent.Type, Reason: newEvent.Reason, Source: newEvent.Source, } return eventCopy, aggregateKey } aggregator.EventAggregate方法中其实就是判断了通过 cache 和 localKeys 判断事件是否相似,如果最近 10 分钟出现过 10 个相似的事件就合并并加上前缀,后续通过logger.eventObserve方法进行 count 累加,如果 message 也相同,肯定就是直接 count++。
好了,event 处理的整个流程基本就是这样,我们可以概括一下,可以结合文中的图对比一起看下:
EventRecorder 对象,通过其提供的 Event 等方法,创建好 event 对象EventBroadcaster 中的 channel 中EventBroadcaster 通过后台运行的 goroutine,从管道中取出事件,并广播给提前注册好的 handler 处理EventSink handler 收到处理事件就通过预处理之后将事件发送给 apiserver回顾 event 的整个流程,可以看到 event 并不是保证 100%事件写入(从预处理的过程来看),这样做是为了后端服务 etcd 的可用性,因为 event 事件在整个集群中产生是非常频繁的,尤其在服务不稳定的时候,而相比 Deployment,Pod 等其他资源,又没那么的重要。所以这里做了个取舍。
参考文档:
1 better0332 2020-03-08 22:36:54 +08:00 注意 k8s event 只保留 1 小时 |
2 silenceper OP @better0332 是的 |