有两个这样的字典列表,如何按字典的 key 值进行去重合并? 比较高效率的做法? - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
qazwsxkevin
V2EX    Python

有两个这样的字典列表,如何按字典的 key 值进行去重合并? 比较高效率的做法?

  •  
  •   qazwsxkevin 2020-02-26 19:37:01 +08:00 5113 次点击
    这是一个创建于 2135 天前的主题,其中的信息可能已经有所发展或是发生改变。

    请教思路算法,或者用什么轮子会更高效?
    毕竟整个 List 还是挺大的,7 到 8 万个元素,
    今天试着用 for,for,for 来整,不太成功,而且解决思路线径还把自己绕晕了
    后来想着是放入 Mysql 搞的,但考虑到使用环境,不太现实
    今天试着用 pandas 来弄了一下,结果还把自己弄晕在 index 和 row 的事情上了

     AList = [{'型号': 12, '重量': 16, '产地': 19,'审核人':33}, {'型号': 22, '重量': 92, '产地': 87,'审核人':34}, {'型号': 15, '重量': 27, '产地': 86,'审核人':35}, {'型号': 71, '重量': 55, '产地': 21,'审核人':36}] BList = [{'产地': 87, '型号': 22, '重量': 92,'审核人':34}, {'产地': 86, '型号': 15, '重量': 27,'审核人':35}, {'产地': 44, '型号': 65, '重量': 91,'审核人':33}] 
    A,B 两个列表每个元素都是一个字典 A,B 两个 List 选择性进行合并,得出 CList 例子是只有四个 k/v 对, 但实际字典很多 k/v 对,而且每个字典里面的键值对的数量,也不尽相同 合并有以下去重条件: 只以型号, 重量, 审核人三个 value 作为去重判断, A,B 两个列表,如果有这三个 value 重复, 只保留 AList 内容(整个字典)加入到 CList BList 里面字典里三个 value 不重复的,整个字典作为元素加入到 CList 
    15 条回复    2020-03-04 10:53:27 +08:00
    1373569162
        1
    1373569162  
       2020-02-26 20:20:36 +08:00
    构造一个 dict,型号, 重量, 审核人拼接起来作为 key,遍历两个 list,key 不在 dict 里就加进去,最后输出 dict.values()
    epicnoob
        2
    epicnoob  
       2020-02-26 22:24:09 +08:00
    f = lambda _: (_['产地'], _['型号'], _['重量'])
    t = sorted(AList+BList, key=f)
    CList = reduce(lambda l, v: l + [v] if f(l[-1]) != f(v) else l, t, [t[0]])
    epicnoob
        3
    epicnoob  
       2020-02-26 22:25:03 +08:00
    排序是稳定的,相同值肯定是 Alist 的在前面
    ferstar
        4
    ferstar  
       2020-02-26 22:50:52 +08:00
    python >= 3.6

    ```python3
    a_list = [
    {"型号": 12, "重量": 16, "产地": 19, "审核人": 33},
    {"型号": 22, "重量": 92, "产地": 87, "审核人": 34},
    {"型号": 15, "重量": 27, "产地": 86, "审核人": 35},
    {"型号": 71, "重量": 55, "产地": 21, "审核人": 36},
    ]

    b_list = [
    {"产地": 87, "型号": 22, "重量": 92, "审核人": 34},
    {"产地": 86, "型号": 15, "重量": 27, "审核人": 35},
    {"产地": 44, "型号": 65, "重量": 91, "审核人": 33},
    ]


    def generate_key(item):
    return "_".join(v for k, v in item.items() if k != "型号")


    hash_map = {}

    for item in a_list:
    hash_map.setdefault(generate_key(item), item)

    for item in b_list:
    hash_map.setdefault(generate_key(item), item)

    c_list = list(hash_map.values())
    ```
    MoYi123
        5
    MoYi123  
       2020-02-26 22:57:20 +08:00
    tmp = set()
    rt = []
    for i in AList + BList:
    t = (i['型号'], i['重量'], i['审核人'])
    if t not in tmp:
    tmp.add(t)
    rt.append(i)
    bugmakerxs
        7
    bugmakerxs  
       2020-02-26 23:12:58 +08:00
    就用 mysql 啊
    bugmakerxs
        8
    bugmakerxs  
       2020-02-26 23:16:11 +08:00
    型号+重量+产地 md5 做 key,该行数据为 value 放入一个字典,Blist 先放进去,alist 后放进去。或者直接做张标,key 做唯一索引
    BlackBerry999
        9
    BlackBerry999  
       2020-02-27 08:34:11 +08:00
    构建一个 3 层的多叉树,一层型号,二层重量,三层审核人。然后遍历 AB 两个 list 构建 3 层多叉树,并且来自于 AList 的值可以覆盖重写叶子节点。
    wuwukai007
        10
    wuwukai007  
       2020-02-27 10:54:29 +08:00
    逻辑梳理一下,
    第一、A 与 B 找固定那三个列的重复,重复的值只保留 原 A 的,保存到 c
    第二,B 根据三列去重后,并且不在刚刚第一步 的结果中 保存到 c
    第三、A 根据三列去重,保存到 c
    wuwukai007
        11
    wuwukai007  
       2020-02-27 11:19:45 +08:00
    regex = ['型号','审核人','重量']
    d1 = pd.DataFrame(a_list).drop_duplicates(regex)
    d2 = pd.DataFrame(b_list).drop_duplicates(regex)
    buf = d1.merge(d2,on=regex,how='inner')
    new_col = [col for col in buf.columns.tolist() if str(col).endswith('_x')] + regex
    buf_c = buf[new_col]
    buf_c.columns = [str(col).replace('_x','') for col in buf_c.columns.tolist()]
    c1 = d1.append(buf_c).drop_duplicates(regex).to_dict(orient="records")
    c2 = d2.to_dict('records')
    c_list = c1 + c2
    wuwukai007
        12
    wuwukai007  
       2020-02-27 11:43:21 +08:00
    还有我试了下 几万条数据 就算用纯 for 循环写,也不慢的吧。
    MisterLee
        13
    MisterLee  
       2020-02-27 17:29:49 +08:00
    Python&Pandas

    a_df= pd.DataFrame(a_list)
    b_df= pd.DataFrame(b_list)

    a_b_df = pd.concat([a_df, b_df], axis=0).drop_duplicates(['型号', '重量', '审核人'], keep='first')

    c_list = []

    for _, item in a_b_df.iterrows():
    c_list.append(item.dropna().to_dict())
    wdc63
        14
    wdc63  
       2020-02-27 18:35:39 +08:00
    @bugmakerxs 嗯,遍历列表 A,以型号, 重量, 审核人的值做 key,下标做 value,建立 hash 表,遍历列表 B,查找每一个元素是否在 hash 表中,有的话合并到 Alist,没有的话添加到 Alist 末尾,每个字典都很简单,合并过程复杂度可以认为是 O(1),整个算法复杂度为 O(M+N),应该是效率最高的算法了。
    moxiaowei
        15
    moxiaowei  
       2020-03-04 10:53:27 +08:00
    @wdc63 确实是的
    关于     帮助文档   &nbp; 自助推广系统     博客     API     FAQ     Solana     2336 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 26ms UTC 02:43 PVG 10:43 LAX 18:43 JFK 21:43
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86