零知识证明 - 从 QSP 到 QAP - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
BlockHeader
V2EX    推广

零知识证明 - 从 QSP 到 QAP

  •  
  •   BlockHeader 2019-05-01 23:49:00 +08:00 2522 次点击
    这是一个创建于 2403 天前的主题,其中的信息可能已经有所发展或是发生改变。

    前一段时间,介绍了零知识证明的入门知识,通过 QSP 问题证明来验证另外一个 NP 问题的解。最近在看 QAP 问题相关的文章和资料,这篇文章分享一下 QAP 问题的理解。

    0 背景介绍

    QSP/QAP 问题的思想都是出自 2012 年一篇论文:Quadratic Span Programs and Succinct NIZKs without PCPs。论文的下载地址: https://eprint.iacr.org/2012/215.pdf

    图 1

    这篇论文提出了使用 QSP/QAP 问题,而不使用 PCP 方式,实现零知识证明。

    1 术语介绍

    SP - Span Program ,采用多项式形式实现计算的验证。

    QSP - Quadratic Span Program,QSP 问题,实现基于布尔电路的 NP 问题的证明和验证。

    QAP - Quadratic Arithmetic Program,QAP 问题,实现基于算术电路的 NP 问题的证明和验证,相对于 QSP,QAP 有更好的普适性。

    PCP - Probabilistically Checkable Proof ,在 QSP 和 QAP 理论之前,学术界主要通过 PCP 理论实现计算验证。PCP 是一种基于交互的,随机抽查的计算验证系统。

    NIZK - Non-Interactive Zero-Knowledge,统称,无交互零知识验证系统。NIZK 需要满足三个条件:1/ 完备性(Completeness),对于正确的解,肯定存在相应证明。2/可靠性 (Soundness) ,对于错误的解,能通过验证的概率极低。3/ 零知识。

    SNARG - Succinct Non-interactive ARGuments,简洁的无须交互的证明过程。

    SNARK - Succinct Non-interactive ARgumentss of Knowledge,相比 SNARG,SNARK 多了 Knowledge,也就是说,SNARK 不光能证明计算过程,还能确认证明者“拥有”计算需要的 Knowledge (只要证明者能给出证明就证明证明者拥有相应的解)。

    zkSNARK - zero-knowledge SNARK,在 SNARK 的基础上,证明和验证双方除了能验证计算外,验证者对其他信息一无所知。

    Statement - 对于 QSP/QAP 而言,某个计算电路的输入。Statement 对证明者和验证者都是公开的。

    Witness - Witness 只有验证者知道。可以理解成,某个计算电路的输出( output )。

    2 QAP 问题和算术电路

    QAP 的定义和 QSP 的定义有些相似(毕竟都是一个思想理论的两种形式)。论文中给出了 QAP 的一般定义和强定义。QAP 的强定义如下:

    QAP 问题是这样一个 NP 问题:给定一系列的多项式,以及给定一个目标多项式,找出多项式的组合能整除目标多项式。输入为 n 位的 QAP 问题定义如下:

    • 给定多个多项式:$v_0, ... , v_m, w_0, ... , w_m, y_0, ... , y_m$
    • 目标多项式:$t$
    • 映射函数:$f: \left{(i, j) |1\leq i \leq n, j\in{0,1} \right} \to \left{1, ... m\right}$ (确定输入对应的序号)

    给定一个证据 u (由 Statement,Witness 以及中间门电路的输出组成),满足如下条件,即可验证 u 是 QAP 问题的解:

    • $(v_0(x) + \sum_{k=1}^m a_k \cdot v_k(x)) \cdot (w_0(x) + \sum_{k=1}^m b_k \cdot w_k(x)) - (y_0(x) + \sum_{k=1}^m c_k \cdot y_k(x)) 能整除 t(x)$

    对一个证据 u,多项式之间的系数($a_1, ..., a_m, 和 b_1, ... , b_m, 以及 c_1, ..., c_m$ 相等)。

    算术电路可以简单看成由如下的三种门组成:加门,系数乘法门以及通用乘法门(减法可以转化为加法,除法可以转化为乘法)。Vitalik 在 2016 年写过的 QAP 介绍,深入浅出的解释 NP 问题的算术电路生成和 QAP 问题的转化。推荐大家都读一读。

    https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649

    以 Vitalik 文章中的例子为例,算术逻辑($x^3 + x + 5$)对应的电路如下图所示:

    图 2

    3 算术问题转化为 QAP 问题

    把一个算术电路转化为 QAP 问题的过程,其实就是将电路中的每个门描述限定的过程,也就是所谓的 R1CS ( Rank-1 constraint system )。

    3.1 算术电路拍平

    算术电路拍平,就是用一组向量定义算术电路中的所有的变量(包括一个常量变量)。比如 2 中所示的电路,拍平之后的向量表示为$[one, x, out, sym_1, y, sym_2 ]$,其中 one 代表常量变量,x 代表输入,out 代表输出,其他是中间门电路的输出。

    假设一个合理的电路向量值为$s - [s_0, s_1, s_2, s_3, s_4, s_5]$。

    3.2 门描述

    对于每个电路中的门进行描述,说清输入以及输出,采用$s \cdot a* s \cdot b - s \cdot c = 0$的形式,其中$a,b,c$都是和电路向量长度一致的向量值。$s \cdot a, s \cdot b, s \cdot c$都是点乘。这种形式表达的是“乘法门”。可以简单的理解,$a, b, c 和 s$的点乘就是“挑选”向量中的变量,查看挑选出的变量是否满足$A * B = C$。

    各个门对应的$a, b, c$的向量值如下:

    门 1 (查看$x * x 是否等于 sym_1$):

    $a = [0, 1, 0, 0, 0, 0]$

    $b = [0, 1, 0, 0, 0, 0]$

    $c = [0, 0, 0, 1, 0, 0]$

    门 2 (查看$sym_1 * x 是否等于 y$):

    $a = [0, 0, 0, 1, 0, 0]$

    $b = [0, 1, 0, 0, 0, 0]$

    $c = [0, 0, 0, 0, 1, 0]$

    门 3 (查看$(x + y)*1 是否等于 sym_2$):

    $a = [0, 1, 0, 0, 1, 0]$

    $b = [1, 0, 0, 0, 0, 0]$

    $c = [0, 0, 0, 0, 0, 1]$

    门 4 (查看$(5x + sym_2) * 1 是否等于 out$):

    $a = [5, 0, 0, 0, 0, 1]$

    $b = [1, 0, 0, 0, 0, 0]$

    $c = [0, 0, 1, 0, 0, 0]$

    3.3 多项式表达

    在门电路描述的基础上,将所有的门电路,转化为多项式表达。将$a, b, c$中的每个系数,看成一个多项式的结果(以 a 为例):$a = [f_0(x), f_1(x), f_2(x), f_3(x), f_4(x), f_5(x)]$。

    针对门 1/门 2/门 3/门 4,$f_0(x), f_1(x), f_2(x), f_3(x), f_4(x), f_5(x)$的取值不同。比如说,门 1 的 a 的$f_0(x)$为 0。门 2 的 a 的$f_0(x)$为 0。门 3 的 a 的$f_0(x)$为 0。门 4 的 a 的$f_0(x)$为 5。

    设定门 1 对应的 x 为 1,门 2 对应的 x 为 2,门 3 对应的 x 为 3,门 4 对应的 x 为 4 的话(这些值可以任意指定),会得到如下的等式:

    $f_0(1) = 0, f_0(2) = 0, f_0(3)=0, f_0(4)=5$

    在获知一系列的输入和输出的前提下,可以通过朗格朗日定理,获取多项式表达式。小伙伴可以通过如下的工具计算多项式: http://skisickness.com/2010/04/28/。

    图 3

    图 4

    也就是说,a 的$f_0(x) = -5 + 9.167x + -5x^2 + 0.833x^3$。同样的方式,可以算其他参数的$f_0(x), f_1(x), f_2(x), f_3(x), f_4(x), f_5(x)$。再把这些多项式代入$s \cdot a* s \cdot b - s \cdot c = 0$,在正确的$s 向量值$的情况下,1/2/3/4 能让等式成立,也就是说,多项式$s \cdot a* s \cdot b - s \cdot c$能整除$(x-1)(x-2)(x-3)(x-4)$。这样,一个算术电路就转化为了 QAP 问题。

    4 QAP 问题的 zkSNARK 证明

    QAP 问题的 zkSNARK 证明过程和 QSP 有点类似。skSNARK 证明过程分为两部分:a) setup 阶段 b )证明阶段。QAP 问题就是给定一系列的多项式$v_0, ..., v_m, w_0, ..., w_m, y_0, ... , y_m$以及目标多项式$t$,证明存在一个证据$u$。这些多项式中的最高阶为$d$。

    4.1 setup 和 CRS

    CRS - Common Reference String,也就是预先 setup 的公开信息。在选定$s$和$\alpha$的情况下,发布如下信息:

    • $s$和$\alpha$的计算结果

      $$E(s^0), E(s^1), ... , E(s^d)$$

      $E(\alpha s^0), E(\alpha s^1), ... , E(\alpha s^d)$

    • 多项式的$\alpha$对的计算结果 $$E(t(s)), E(\alpha t(s))$$

      $$E(v_0(s)), ... E(v_m(s)), E(\alpha v_0(s)), ..., E(\alpha v_m(s))$$

      $$E(w_0(s)), ... E(w_m(s)), E(\alpha w_0(s)), ..., E(\alpha w_m(s))$$

      $$E(y_0(s)), ... E(y_m(s)), E(\alpha y_0(s)), ..., E(\alpha y_m(s))$$

    • 多项式的$\beta_v, \beta_w, \beta_y, \gamma$参数的计算结果

      $$E(\gamma), E(\beta_v\gamma), E(\beta_w\gamma), E(\beta_y\gamma)$$

      $$E(\beta_vv_1(s)), ... , E(\beta_vv_m(s))$$

      $$E(\beta_ww_1(s)), ... , E(\beta_ww_m(s))$$

      $$E(\beta_yy_1(s)), ... , E(\beta_yy_m(s))$$

      $$E(\beta_vt(s)), E(\beta_wt(s)), E(\beta_yt(s))$$

    4.2 证明者提供证据

    在 QAP 的映射函数中,$1, ..., m$中有些数字没有映射到,也就是除了输入之外的序号。这些没有映射到的序号(中间门电路和输出)组成$I_{free}$,并定义($k$为未映射到的序号):

    $$v_{free}(x) = \sum_k a_kv_k(x)$$

    证明者需提供的证据如下

    • $$V_{free} := E(v_{free}(s)), \ W := E(w(s)), \ Y := E(y(s)), \ H := E(h(s)),$$
    • $$V_{free}' := E(\alpha v_{free}(s)), W' := E(\alpha w(s)), Y' := E(\alpha y(s)), H' := E(\alpha h(s)), $$
    • $$P := E(\beta_vv_{free}(s) + \beta_ww(s) + \beta_yy(s))$$

    $V_{free}/V_{free}', W/W', Y/Y', H/H'$是$\alpha$对,用以验证$v_{free},w,y,h$是否是多项式形式。$t$是已知,公开的,毋需验证。$P$用来确保$v_{free}(s), w(s) 和 y(s)$的计算采用一致的参数。

    4.3 验证者验证

    在 QAP 的映射函数中,$1, ..., m$中所有映射到的序号(输入序号)作为组成系数组成的二项式定义为(和$v_{free}$互补):

    $$v_{in}(x) = \sum_k a_kv_k(x)$$

    验证者需要验证如下的等式是否成立:

    • $$e(V_{free}', g) = e(V_{free}, g^\alpha), e(W', E(1)) = e(W, E(\alpha)), e(Y', E(1)) = e(Y, E(\alpha)), e(H', E(1)) = e(H, E(\alpha))$$
    • $$e(E(\gamma), P) = e(E(\beta_v\gamma), V_{free})e(E(\beta_w\gamma), W)e(E(\beta_y\gamma), Y)$$
    • $$e(E(v_0(s))E(v_{in}(s))V_{free}, E(w_0(s))W) = e(H, E(t(s)))e(y_0(s)Y, E(1))$$

    第一个(系列)等式验证$V_{free}/V'_{free}, W/W', Y/Y', H/H'$是否是$\alpha$对。

    第二个等式验证$V_{free}, W, Y$的计算采用一致的参数。因为$v_{free}, w, y$都是二项式,它们的和也同样是一个多项式,所以采用$\gamma$参数进行确认。证明过程如下:

    $$e(E(\gamma), P) = e(E(\gamma), E(\beta_vv_{free}(s) + \beta_ww(s) + \beta_yy(s))) = e(g, g)^{\gamma(\beta_vv_{free}(s) + \beta_ww(s) + \beta_yy(s))}$$

    $e(E(\beta_v\gamma), V_{free})e(E(\beta_w\gamma), W)e(E(\beta_y\gamma), Y) = e(E(\beta_v\gamma), E(v_{free}(s)))e(E(\beta_w\gamma), E(w(s)))e(E(\beta_y\gamma), E(y(s)))$

    $= e(g,g)^{(\beta_v\gamma)v_{free}(s)}e(g,g)^{(\beta_w\gamma)w(s)}e(g,g)^{(\beta_y\gamma)y(s)}= e(g, g)^{\gamma(\beta_vv_{free}(s) + \beta_ww(s) + \beta_yy(s))}$

    第三个等式验证$v(s)w(s) - y(s) = h(s)t(s)$,其中$v_0(s)+v_{in}(s)+v_{free}(s) = v(s)$。

    简单的说,逻辑是确认$v, w, y, h$是多项式,并且$v,w,y$采用同样的参数,满足$v(s)w(s)- y(s)= h(s)t(s)$。

    到目前为止,整个 QAP 的 zkSNARK 的证明过程逻辑已见雏形。

    4.4 $\delta $ 偏移

    为了进一步“隐藏” $V_{free}, W, Y$,额外需要采用两个偏移: $\delta_{free}, \delta_w 和 \delta_y$。 $v{free}(s)/w(s)/y(s)/h(s)$进行如下的变形,验证者用同样的逻辑验证。

    $$v_{free}(s) \rightarrow v_{free}(s) + \delta_{free}t(s)$$ $$w(s) \rightarrow w(s) + \delta_wt(s)$$ $$y(s) \rightarrow y(s) + \delta_yt(s)$$ $$h(s) \rightarrow h(s)+\delta_{free}(w_0(s) + w(s)) + \delta_w(v_0(s) + v_{in}(s) + v_{free}(s)) + (\delta_{free}\delta_w)t(s) - \delta_y$$

    总结:QAP 和 QSP 问题类似。QSP 问题主要用于布尔电路计算表达,QAP 问题主要用于算术电路计算表达。将一个算术电路计算转化为 QAP 问题的过程,其实就是对电路中每个门电路进行描述限制的过程。通过朗格朗日定理,实现算术电路的多项式表达。QAP 问题的 zkSNARK 的证明验证过程和 QSP 非常相似。

    对技术感兴趣的小伙伴,请关注 公众号 “星想法”,一起讨论区块链技术。

    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2689 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 29ms UTC 08:08 PVG 16:08 LAX 00:08 JFK 03:08
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86