硬核机器学习干货,手把手教你写 KNN! - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
yoggieCDA
V2EX    科技

硬核机器学习干货,手把手教你写 KNN!

  •  
  •   yoggieCDA 2019-03-20 11:57:45 +08:00 1794 次点击
    这是一个创建于 2445 天前的主题,其中的信息可能已经有所发展或是发生改变。

    在探讨算法之前,我们先来谈一谈什么是机器学习,相信大家都听说过 AlphaGo。2016 年 3 月,AlphaGo 与围棋世界冠军李世石进行围棋人机大战,最终以 4:1 获胜; 2017 年 5 月,AlphaGo 与世界围棋冠军柯洁对战,以 3:0 获胜。AlphaGo 其实就是一款围棋人工智能程序,其主要工作原理是“深度学习”。看一下下面这张图,来了解一下,人工智能、机器学习和深度学习的关系。

    在 20 世纪五十年代,人工智能开始兴起,早期的人工智能还是让人兴奋的(虽然后来发展历程跌宕起伏,像下面这张图,比过山车还刺激,当然这个不是我们今天的探讨重点,感兴趣的小伙伴们可以自行补充这块知识)。在八十年代的时候,机器学习作为人工智能的一个分支也开始兴起,之后也得到了很广泛的应用,比如淘宝京东商品推送,豆瓣电影的“猜你喜欢”这类的推荐系统,还有其他的领域,像 数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺骗、语音与手写识别、战略游戏、机器人等等等等,足以看出它的应用范围有多广。2010 年左右,机器学习里面的一个分支深度学习取得了突破性进展,驱动人工智能蓬勃发展,比如像 AlphaGo、人脸识别、图像识别、文字识别、智能监控等等。

    这里我们重点来看一下,机器学习的概念,什么是机器学习呢?他其实就是一段计算机程序,针对某一个特定的任务,从经验中学习,并且变得越来越好。这就是机器学习。机器学习有哪些类型呢?主要就是监督学习、无监督学习、半监督学习、强化学习。

    机器学习定义

    人工智能( Artificial Intelligence, AI ):是指由人工制造出来的系统所表现出来的智能。类似于电影中终结者、阿尔法狗这类的具有一定的和人类智慧同样本质的一类智能的物体。

    机器学习( Machine Learning, ML ):是人工智能的一个分支,是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。让一个计算机程序针对某一个特定任务,从经验中学习,并且越来越好。

    深度学习( Deep Learning, DL ):是机器学习拉出的分支。是机器学习算法中的一种算法,一种实现机器学习的技术和学习方法。

    机器学习类型

    监督学习就是输入一个包含有特征和目标的训练集,并且要求目标是认为标注好的,也就是你需要提前告诉模型,特征是什么,目标是什么,然后让模型根据训练集学习出一个函数,那么当新的数据来的时候,可以根据这个函数预测出结果。

    无监督学习与监督学习唯一的不同就是训练集没有提前进行人为标注。

    半监督学习顾名思义就是介于监督学习和无监督学习之间

    强化学习就是通过观察来学习做成某个动作,每个动作呢都会对环境有所影响,并且环境会给出反馈,学习对象就会根据观察到的周围环境的反馈来做出判断。这个过程就是强化学习。 那我们今天要讲的 k-近邻算法就属于机器学习中的有监督学习,并且属于有监督学习中的距离类模型。

    一、k-近邻算法是什么

    k-近邻算法( k-Nearest Neighbour algorithm ),又称为 KNN 算法,是数据挖掘技术中原理最简单的算法。KNN 的工作原理:给定一个已知标签类别的训练数据集,输入没有标签的新数据后,在训练数据集中找到与新数据最邻近的 k 个实例,如果这 k 个实例的多数属于某个类别,那么新数据就属于这个类别。可以简单理解为:由那些离 X 最近的 k 个点来投票决定 X 归为哪一类。 图 1 中有红色三角和蓝色方块两种类别,我们现在需要判断绿色圆点属于哪种类别

    当 k=3 时,绿色圆点属于红色三角这种类别;

    当 k=5 时,绿色圆点属于蓝色方块这种类别。

    举个简单的例子,可以用 k-近邻算法分类一个电影是爱情片还是动作片。(打斗镜头和接吻镜头数量为虚构) 表 1 就是我们已有的数据集合,也就是训练样本集。这个数据集有两个特征打斗镜头数和接吻镜头数。除此之外,我们也知道每部电影的所属类型,即分类标签。粗略看来,接吻镜头多的就是爱情片,打斗镜头多的就是动作片。以我们多年的经验来看,这个分类还算合理。如果现在给我一部新的电影,告诉我电影中的打斗镜头和接吻镜头分别是多少,那么我可以根据你给出的信息进行判断,这部电影是属于爱情片还是动作片。而 k-近邻算法也可以像我们人一样做到这一点。但是,这仅仅是两个特征,如果把特征扩大到 N 个呢?我们人类还能凭经验“一眼看出”电影的所属类别吗?想想就知道这是一个非常困难的事情,但算法可以,这就是算法的魅力所在。

    我们已经知道 k-近邻算法的工作原理,根据特征比较,然后提取样本集中特征最相似数据(最近邻)的分类标签。那么如何进行比较呢?比如表 1 中新出的电影,我们该如何判断他所属的电影类别呢?如图 2 所示: 我们可以从散点图中大致推断,这个未知电影有可能是爱情片,因为看起来距离已知的三个爱情片更近一点。k-近邻算法是用什么方法进行判断呢?没错,就是距离度量。这个电影分类例子中有两个特征,也就是在二维平面中计算两点之间的距离,就可以用我们高中学过的距离计算公式: 如果是多个特征扩展到 N 维空间,怎么计算?没错,我们可以使用欧氏距离(也称欧几里得度量),如下所示: 通过计算可以得到训练集中所有电影与未知电影的距离,如表 2 所示: 通过表 2 的计算结果,我们可以知道绿点标记的电影到爱情片《后来的我们》距离最近,为 29.1。如果仅仅根据这个结果,判定绿点电影的类别为爱情片,这个算法叫做最近邻算法,而非 k-近邻算法。k-近邻算法步骤如下:

    (1) 计算已知类别数据集中的点与当前点之间的距离;(2) 按照距离递增次序排序;(3) 选取与当前点距离最小的 k 个点;(4) 确定前 k 个点所在类别的出现频率;(5) 返回前 k 个点出现频率最高的类别作为当前点的预测类别。

    比如,现在 K=4,那么在这个电影例子中,把距离按照升序排列,距离绿点电影最近的前 4 个的电影分别是《后来的我们》、《前任 3 》、《无问西东》和《红海行动》,这四部电影的类别统计为爱情片:动作片=3:1,出现频率最高的类别为爱情片,所以在 k=4 时,绿点电影的类别为爱情片。这个判别过程就是 k-近邻算法。

    二、k-近邻算法的 Python 实现

    在了解 k-近邻算法的原理及实施步骤之后,我们用 python 将这些过程实现。

    1. 算法实现

    1.1 构建已经分类好的原始数据集

    为了方便验证,这里使用 python 的字典 dict 构建数据集,然后再将其转化成 DataFrame 格式。

    importpandas aspdrowdata={'电影名称':['无问西东','后来的我们','前任 3','红海行动','唐人街探案','战狼 2'],'打斗镜头':[1,5,12,108,112,115],'接吻镜头':[101,89,97,5,9,8],'电影类型':['爱情片','爱情片','爱情片','动作片','动作片','动作片']}movie_data=pd.DataFrame(rowdata)movie_data

    1.2 计算已知类别数据集中的点与当前点之间的距离

    new_data =[24,67]dist =list((((movie_data.iloc[:6,1:3]-new_data)**2).sum(1))**0.5)dist

    1.3 将距离升序排列,然后选取距离最小的 k 个点

    dist_l =pd.DataFrame({'dist': dist, 'labels': (movie_data.iloc[:6, 3])})dr =dist_l.sort_values(by ='dist')[: 4]dr

    1.4 确定前 k 个点所在类别的出现频率

    re =dr.loc[:,'labels'].value_counts()re

    1.5 选择频率最高的类别作为当前点的预测类别

    result =[]result.append(re.index[0])result

    1. 封装函数

    完整的流程已经实现了,下面我们需要将这些步骤封装成函数,方便我们后续的调用

    importpandas aspd*"""函数功能:KNN 分类器参数说明:**new_data:需要预测分类的数据集**dataSet:已知分类标签的数据集(训练集)**k:k-近邻算法参数,选择距离最小的 k 个点返回:result:分类结果**"""*defclassify0(inX,dataSet,k):result =[]dist =list((((dataSet.iloc[:,1:3]-inX)**2).sum(1))**0.5)dist_l =pd.DataFrame({'dist':dist,'labels':(dataSet.iloc[:, 3])})dr =dist_l.sort_values(by ='dist')[: k]re =dr.loc[:, 'labels'].value_counts()result.append(re.index[0])returnresult

    测试函数运行结果

    inX =new_datadataSet =movie_datak =3classify0(inX,dataSet,k)

    这就是我们使用 k-近邻算法构建的一个分类器,根据我们的“经验”可以看出,分类器给的答案还是比较符合我们的预期的。

    学习到这里,有人可能会问:”分类器何种情况下会出错?“或者”分类器给出的答案是否永远都正确?“答案一定是否定的,分类器并不会得到百分百正确的结果,我们可以使用很多种方法来验证分类器的准确率。此外,分类器的性能也会受到很多因素的影响,比如 k 的取值就在很大程度上影响了分类器的预测结果,还有分类器的设置、原始数据集等等。为了测试分类器的效果,我们可以把原始数据集分为两部分,一部分用来训练算法(称为训练集),一部分用来测试算法的准确率(称为测试集)。同时,我们不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说,k-近邻算法不具有显式的学习过程。

    三、k-近邻算法之约会网站配对效果判定

    海伦一直使用在线约会网站寻找适合自己的约会对象,尽管约会网站会推荐不同的人选,但她并不是每一个都喜欢,经过一番总结,她发现曾经交往的对象可以分为三类:

    • 不喜欢的人
    • 魅力一般的人
    • 极具魅力得人

    海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件 datingTestSet.txt 中,其中各字段分别为:

    每年飞行常客里程

    玩游戏视频所占时间比

    每周消费冰淇淋公升数

    1. 准备数据

    datingTest =pd.read_table('datingTestSet.txt',header=None)

    datingTest.head()

    datingTest.shape

    datingTest.info()

    1. 分析数据

    使用 Matplotlib 创建散点图,查看各数据的分布情况

    %matplotlib inline

    importmatplotlib asmpl

    importmatplotlib.pyplot asplt

    把不同标签用颜色区分

    Colors =[]

    for

    iinrange(datingTest.shape[0]):

    m =datingTest.iloc[i,-1]

    if

    m=='didntLike':

    Colors.append('black')

    if

    m=='smallDoses':

    Colors.append('orange')

    if

    m=='largeDoses':

    Colors.append('red')

    绘制两两特征之间的散点图

    plt.rcParams['font.sans-serif']=['Simhei'] 图中字体设置为黑体

    pl=plt.figure(figsize=(12,8))

    fig1=pl.add_subplot(221)

    plt.scatter(daingTest.iloc[:,1],datingTest.iloc[:,2],marker='.',c=Colors)

    plt.xlabel('玩游戏视频所占时间比')

    plt.ylabel('每周消费冰淇淋公升数')

    fig2=pl.add_subplot(222)

    plt.scatter(datingTest.iloc[:,0],datingTest.iloc[:,1],marker='.',c=Colors)

    plt.xlabel('每年飞行常客里程')

    plt.ylabel('玩游戏视频所占时间比')

    fig3=pl.add_subplot(223)

    plt.scatter(datingTest.iloc[:,0],datingTest.iloc[:,2],marker='.',c=Colors)

    plt.xlabel('每年飞行常客里程')

    plt.ylabel('每周消费冰淇淋公升数')

    plt.show()

    1. 数据归一化

    下表是提取的 4 条样本数据,如果我们想要计算样本 1 和样本 2 之间的距离,可以使用欧几里得计算公式: 我们很容易发现,上面公式中差值最大的属性对计算结果的影响最大,也就是说每年飞行常客里程对计算结果的影响远远大于其他两个特征,原因仅仅是因为它的数值比较大,但是在海伦看来这三个特征是同等重要的,所以接下来我们要进行数值归一化的处理,使得这三个特征的权重相等。

    数据归一化的处理方法有很多种,比如 0-1 标准化、Z-score 标准化、Sigmoid 压缩法等等,在这里我们使用最简单的 0-1 标准化,公式如下: """

    函数功能:归一化

    参数说明:

    dataSet:原始数据集

    返回:0-1 标准化之后的数据集

    """

    def

    minmax(dataSet):

    minDf =dataSet.min()

    maxDf =dataSet.max()

    normSet =(dataSet -minDf )/(maxDf -minDf)

    return

    normSet

    将我们的数据集带入函数,进行归一化处理

    datingT =pd.concat([minmax(datingTest.iloc[:, :3]), datingTest.iloc[:,3]], axis=1)

    datingT.head()

    1. 划分训练集和测试集

    前面概述部分我们有提到,为了测试分类器的效果,我们可以把原始数据集分为训练集和测试集两部分,训练集用来训练模型,测试集用来验证模型准确率。

    关于训练集和测试集的切分函数,网上一搜一大堆,Scikit Learn 官网上也有相应的函数比如 modelselection 类中的 train

    test_split 函数也可以完成训练集和测试集的切分。

    通常来说,我们只提供已有数据的 90%作为训练样本来训练模型,其余 10%的数据用来测试模型。这里需要注意的 10%的测试数据一定要是随机选择出来的,由于海伦提供的数据并没有按照特定的目的来排序,所以我们这里可以随意选择 10%的数据而不影响其随机性。

    """

    函数功能:切分训练集和测试集

    参数说明:

    dataSet:原始数据集

    rate:训练集所占比例

    返回:切分好的训练集和测试集

    """

    def

    randSplit(dataSet,rate=0.9):

    n =dataSet.shape[0]

    m =int(n*rate)

    train =dataSet.iloc[:m,:]

    test =dataSet.iloc[m:,:]

    test.index =range(test.shape[0])

    return

    train,test

    train,test =randSplit(datingT)

    train

    test

    1. 分类器针对于约会网站的测试代码

    接下来,我们一起来构建针对于这个约会网站数据的分类器,上面我们已经将原始数据集进行归一化处理然后也切分了训练集和测试集,所以我们的函数的输入参数就可以是 train、test 和 k(k-近邻算法的参数,也就是选择的距离最小的 k 个点)。

    """

    函数功能:k-近邻算法分类器

    参数说明:

    train:训练集

    test:测试集

    k:k-近邻参数,即选择距离最小的 k 个点

    返回:预测好分类的测试集

    """

    def

    datingClass(train,test,k):

    n =train.shape[1] -1

    m =test.shape[0]

    result =[]

    for

    iinrange(m):

    dist =list((((train.iloc[:, :n] -test.iloc[i, :n]) 2).sum(1))0.5)

    dist_l =pd.DataFrame({'dist': dist, 'labels': (train.iloc[:, n])})

    dr =dist_l.sort_values(by ='dist')[: k]

    re =dr.loc[:, 'labels'].value_counts()

    result.append(re.index[0])

    result =pd.Series(result)

    test['predict'] =result

    acc =(test.iloc[:,-1]==test.iloc[:,-2]).mean()

    print(f'模型预测准确率为{acc}')

    return

    test

    最后,测试上述代码能否正常运行,使用上面生成的测试集和训练集来导入分类器函数之中,然后执行并查看分类结果。

    datingClass(train,test,5)

    从结果可以看出,我们模型的准确率还不错,这是一个不错的结果了。

    四、算法总结

    image

    1. 优点
    • 简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归

    • 可用于数值型数据和离散型数据

    • 无数据输入假定

    • 适合对稀有事件进行分类

    • 计算复杂性高;空间复杂性高;

    • 计算量太大,所以一般数值很大的时候不用这个,但是单个样本又不能太少,否则容易发生误分。

    • 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少)

    1. 缺点

    可理解性比较差,无法给出数据的内在含义

    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1032 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 26ms UTC 23:36 PVG 07:36 LAX 15:36 JFK 18:36
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86