浅析 Python 中的多进程、多线程、协程 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
1024dada
V2EX    Python

浅析 Python 中的多进程、多线程、协程

  •  
  •   1024dada 2018-12-24 14:11:04 +08:00 2396 次点击
    这是一个创建于 2487 天前的主题,其中的信息可能已经有所发展或是发生改变。

    进程与线程的历史

    我们都知道计算机是由硬件和软件组成的。硬件中的 CPU 是计算机的核心,它承担计算机的所有任务。 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配、任务的调度。 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等。 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专门的管理和控制执行程序的数据结构进程控制块。 进程就是一个程序在一个数据集上的一次动态执行过程。 进程一般由程序、数据集、进程控制块三部分组成。我们编写的程序用来描述进程要完成哪些功能以及如何完成;数据集则是程序在执行过程中所需要使用的资源;进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志。

    在早期的操作系统里,计算机只有一个核心,进程执行程序的最小单位,任务调度采用时间片轮转的抢占式方式进行进程调度。每个进程都有各自的一块独立的内存,保证进程彼此间的内存地址空间的隔离。 随着计算机技术的发展,进程出现了很多弊端,一是进程的创建、撤销和切换的开销比较大,二是由于对称多处理机(对称多处理机( SymmetricalMulti-Processing )又叫 SMP,是指在一个计算机上汇集了一组处理器(多 CPU),各 CPU 之间共享内存子系统以及总线结构)的出现,可以满足多个运行单位,而多进程并行开销过大。 这个时候就引入了线程的概念。 线程也叫轻量级进程,它是一个基本的 CPU 执行单元,也是程序执行过程中的最小单元,由线程 ID、程序计数器、寄存器集合 和堆栈共同组成。线程的引入减小了程序并发执行时的开销,提高了操作系统的并发性能。 线程没有自己的系统资源,只拥有在运行时必不可少的资源。但线程可以与同属与同一进程的其他线程共享进程所拥有的其他资源。

    进程与线程之间的关系

    线程是属于进程的,线程运行在进程空间内,同一进程所产生的线程共享同一内存空间,当进程退出时该进程所产生的线程都会被强制退出并清除。线程可与属于同一进程的其它线程共享进程所拥有的全部资源,但是其本身基本上不拥有系统资源,只拥有一点在运行中必不可少的信息(如程序计数器、一组寄存器和栈)。

    python 线程

    Threading 用于提供线程相关的操作,线程是应用程序中工作的最小单元。

    1、threading 模块

    threading 模块建立在 _thread 模块之上。thread 模块以低级、原始的方式来处理和控制线程,而 threading 模块通过对 thread 进行二次封装,提供了更方便的 api 来处理线程。

    import threading import time def worker(num): """ thread worker function :return: """ time.sleep(1) print("The num is %d" % num) return for i in range(20): t = threading.Thread(target=worker,args=(i,),name=“ t.%d ” % i) t.start()

    上述代码创建了 20 个“前台”线程,然后控制器就交给了 CPU,CPU 根据指定算法进行调度,分片执行指令。

    Thread 方法说明

    t.start() : 激活线程,

    t.getName() : 获取线程的名称

    t.setName() : 设置线程的名称

    t.name : 获取或设置线程的名称

    t.is_alive() : 判断线程是否为激活状态

    t.isAlive() :判断线程是否为激活状态

    t.setDaemon() 设置为后台线程或前台线程(默认:False );通过一个布尔值设置线程是否为守护线程,必须在执行 start()方法之后才可以使用。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止

    t.isDaemon() : 判断是否为守护线程

    t.ident:获取线程的标识符。线程标识符是一个非零整数,只有在调用了 start()方法之后该属性才有效,否则它只返回 None。

    t.join() :逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义

    t.run() :线程被 cpu 调度后自动执行线程对象的 run 方法

    2、线程锁 threading.RLock 和 threading.Lock

    由于线程之间是进行随机调度,并且每个线程可能只执行 n 条执行之后,CPU 接着执行其他线程。为了保证数据的准确性,引入了锁的概念。所以,可能出现如下问题:

    例:假设列表 A 的所有元素就为 0,当一个线程从前向后打印列表的所有元素,另外一个线程则从后向前修改列表的元素为 1,那么输出的时候,列表的元素就会一部分为 0,一部分为 1,这就导致了数据的不一致。锁的出现解决了这个问题。

    import threading import time globals_num = 0 lock = threading.RLock() def Func(): lock.acquire() # 获得锁 global globals_num globals_num += 1 time.sleep(1) print(globals_num) lock.release() # 释放锁 for i in range(10): t = threading.Thread(target=Func) t.start()

    3、threading.RLock 和 threading.Lock 的区别

    RLock 允许在同一线程中被多次 acquire。而 Lock 却不允许这种情况。 如果使用 RLock,那么 acquire 和 release 必须成对出现,即调用了 n 次 acquire,必须调用 n 次的 release 才能真正释放所占用的琐。

    import threading lock = threading.Lock() #Lock 对象 lock.acquire() lock.acquire() #产生了死琐。 lock.release() lock.release()  import threading rLock = threading.RLock() #RLock 对象 rLock.acquire() rLock.acquire() #在同一线程内,程序不会堵塞。 rLock.release() rLock.release()

    4、threading.Event

    python 线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

    事件处理的机制:全局定义了一个“ Flag ”,如果“ Flag ”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“ Flag ”值为 True,那么 event.wait 方法时便不再阻塞。

    clear:将“ Flag ”设置为 False
    set:将“ Flag ”设置为 True
    Event.isSet() :判断标识位是否为 Ture。

    import threading def do(event): print('start') event.wait() print('execute') event_obj = threading.Event() for i in range(10): t = threading.Thread(target=do, args=(event_obj,)) t.start() event_obj.clear() inp = input('input:') if inp == 'true': event_obj.set(

    当线程执行的时候,如果 flag 为 False,则线程会阻塞,当 flag 为 True 的时候,线程不会阻塞。它提供了本地和远程的并发性。

    5、threading.Condition

    一个 condition 变量总是与某些类型的锁相联系,这个可以使用默认的情况或创建一个,当几个 condition 变量必须共享和同一个锁的时候,是很有用的。锁是 conditon 对象的一部分:没有必要分别跟踪。

    condition 变量服从上下文管理协议:with 语句块封闭之前可以获取与锁的联系。acquire() 和 release() 会调用与锁相关联的相应的方法。

    其他和锁关联的方法必须被调用,wait()方法会释放锁,当另外一个线程使用 notify() or notify_all()唤醒它之前会一直阻塞。一旦被唤醒,wait()会重新获得锁并返回,

    Condition 类实现了一个 conditon 变量。 这个 conditiaon 变量允许一个或多个线程等待,直到他们被另一个线程通知。 如果 lock 参数,被给定一个非空的值,,那么他必须是一个 lock 或者 Rlock 对象,它用来做底层锁。否则,会创建一个新的 Rlock 对象,用来做底层锁.

    wait(timeout=None) : 等待通知,或者等到设定的超时时间。当调用这 wait()方法时,果调用它的线程没有得到锁,那么会抛出一个 RuntimeError 异常。wati()释放锁以后,在被调用相同条件的另一个进程用 notify() or notify_all() 叫醒之前 会一直阻塞。wait() 还可以指定一个超时时间。

    如果有等待的线程,notify()方法会唤醒一个在等待 conditon 变量的线程。notify_all() 则会唤醒所有在等待 conditon 变量的线程。

    注意:notify()和 notify_all()不会释放锁,也就是说,线程被唤醒后不会立刻返回他们的 wait() 调用。除非线程调用 notify()和 notify_all()之后放弃了锁的所有权。

    在典型的设计风格里,利用 condition 变量用锁去通许访问一些共享状态,线程在获取到它想得到的状态前,会反复调用 wait()。修改状态的线程在他们状态改变时调用 notify() or notify_all(),用这种方式,线程会尽可能的获取到想要的一个等待者状态。 例子: 生产者-消费者模型,

    import threading import time def consumer(cond): with cond: print("consumer before wait") cond.wait() print("consumer after wait") def producer(cond): with cond: print("producer before notifyAll") cond.notifyAll() print("producer after notifyAll") cOndition= threading.Condition() c1 = threading.Thread(name="c1", target=consumer, args=(condition,)) c2 = threading.Thread(name="c2", target=consumer, args=(condition,)) p = threading.Thread(name="p", target=producer, args=(condition,)) c1.start() time.sleep(2) c2.start() time.sleep(2) p.start()

    6、queue 模块

    Queue 就是对队列,它是线程安全的

    举例来说,我们去麦当劳吃饭。饭店里面有厨师职位,前台负责把厨房做好的饭卖给顾客,顾客则去前台领取做好的饭。这里的前台就相当于我们的队列。形成管道样,厨师做好饭通过前台传送给顾客,所谓单向队列

    这个模型也叫生产者-消费者模型。

    import queue
    q = queue.Queue(maxsize=0) # 构造一个先进显出队列,maxsize 指定队列长度,为 0 时,表示队列长度无限制。
    q.join() # 等到队列为 kong 的时候,在执行别的操作
    q.qsize() # 返回队列的大小 (不可靠)
    q.empty() # 当队列为空的时候,返回 True 否则返回 False (不可靠)
    q.full() # 当队列满的时候,返回 True,否则返回 False (不可靠)
    q.put(item, block=True, timeout=None) # 将 item 放入 Queue 尾部,item 必须存在,可以参数 block 默认为 True,表示当队列满时,会等待队列给出可用位置,
                             为 False 时为非阻塞,此时如果队列已满,会引发 queue.Full 异常。 可选参数 timeout,表示 会阻塞设置的时间,过后,
                            如果队列无法给出放入 item 的位置,则引发 queue.Full 异常

    q.get(block=True, timeout=None) # 移除并返回队列头部的一个值,可选参数 block 默认为 True,表示获取值的时候,如果队列为空,则阻塞,为 False 时,不阻塞,
                          若此时队列为空,则引发 queue.Empty 异常。 可选参数 timeout,表示会阻塞设

    置的时候,过后,如果队列为空,则引发 Empty 异常。

    q.put_nowait(item) # 等效于 put(item,block=False)
    q.get_nowait() # 等效于 get(item,block=False)

    代码如下:

    #!/usr/bin/env python import Queue import threading message = Queue.Queue(10) def producer(i): while True: message.put(i) def consumer(i): while True: msg = message.get() for i in range(12): t = threading.Thread(target=producer, args=(i,)) t.start() for i in range(10): t = threading.Thread(target=consumer, args=(i,)) t.start()

    那就自己做个线程池吧:

    方法一

    # 简单往队列中传输线程数 import threading import time import queue class Threadingpool(): def __init__(self,max_num = 10): self.queue = queue.Queue(max_num) for i in range(max_num): self.queue.put(threading.Thread) def getthreading(self): return self.queue.get() def addthreading(self): self.queue.put(threading.Thread) def func(p,i): time.sleep(1) print(i) p.addthreading() if __name__ == "__main__": p = Threadingpool() for i in range(20): thread = p.getthreading() t = thread(target = func, args = (p,i)) t.start()

    方法二

    #往队列中无限添加任务 import queue import threading import contextlib import time StopEvent = object() class ThreadPool(object): def __init__(self, max_num): self.q = queue.Queue() self.max_num = max_num self.terminal = False self.generate_list = [] self.free_list = [] def run(self, func, args, callback=None): """ 线程池执行一个任务 :param func: 任务函数 :param args: 任务函数所需参数 :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数 1、任务函数执行状态; 2、任务函数返回值(默认为 None,即:不执行回调函数) :return: 如果线程池已经终止,则返回 True 否则 None """ if len(self.free_list) == 0 and len(self.generate_list) < self.max_num: self.generate_thread() w = (func, args, callback,) self.q.put(w) def generate_thread(self): """ 创建一个线程 """ t = threading.Thread(target=self.call) t.start() def call(self): """ 循环去获取任务函数并执行任务函数 """ current_thread = threading.currentThread self.generate_list.append(current_thread) event = self.q.get() # 获取线程 while event != StopEvent: # 判断获取的线程数不等于全局变量 func, arguments, callback = event # 拆分元祖,获得执行函数,参数,回调函数 try: result = func(*arguments) # 执行函数 status = True except Exception as e: # 函数执行失败 status = False result = e if callback is not None: try: callback(status, result) except Exception as e: pass # self.free_list.append(current_thread) # event = self.q.get() # self.free_list.remove(current_thread) with self.work_state(): event = self.q.get() else: self.generate_list.remove(current_thread) def close(self): """ 关闭线程,给传输全局非元祖的变量来进行关闭 :return: """ for i in range(len(self.generate_list)): self.q.put(StopEvent) def terminate(self): """ 突然关闭线程 :return: """ self.terminal = True while self.generate_list: self.q.put(StopEvent) self.q.empty() @contextlib.contextmanager def work_state(self): self.free_list.append(threading.currentThread) try: yield finally: self.free_list.remove(threading.currentThread) def work(i): print(i) return i +1 # 返回给回调函数 def callback(ret): print(ret) pool = ThreadPool(10) for item in range(50): pool.run(func=work, args=(item,),callback=callback) pool.terminate() # pool.close()

    python 进程

    multiprocessing 是 python 的多进程管理包,和 threading.Thread 类似。

    1、multiprocessing 模块

    直接从侧面用 subprocesses 替换线程使用 GIL 的方式,由于这一点,multiprocessing 模块可以让程序员在给定的机器上充分的利用 CPU。在 multiprocessing 中,通过创建 Process 对象生成进程,然后调用它的 start()方法,

    from multiprocessing import Process def func(name): print('hello', name) if __name__ == "__main__": p = Process(target=func,args=('zhangyanlin',)) p.start() p.join() # 等待进程执行完毕

    在使用并发设计的时候最好尽可能的避免共享数据,尤其是在使用多进程的时候。 如果你真有需要 要共享数据,multiprocessing 提供了两种方式。

    ( 1 ) multiprocessing,Array,Value

    数据可以用 Value 或 Array 存储在一个共享内存地图里,如下:

    from multiprocessing import Array,Value,Process def func(a,b): a.value = 3.333333333333333 for i in range(len(b)): b[i] = -b[i] if __name__ == "__main__": num = Value('d',0.0) arr = Array('i',range(11)) c = Process(target=func,args=(num,arr)) d= Process(target=func,args=(num,arr)) c.start() d.start() c.join() d.join() print(num.value) for i in arr: print(i)<br>输出:<br>   3.1415927<br>  [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

    创建 num 和 arr 时,“ d ”和“ i ”参数由 Array 模块使用的 typecodes 创建:“ d ”表示一个双精度的浮点数,“ i ”表示一个有符号的整数,这些共享对象将被线程安全的处理。

    Array(‘ i', range(10))中的‘ i'参数:

    ‘ c': ctypes.c_char      ‘ u': ctypes.c_wchar     ‘ b': ctypes.c_byte      ‘ B': ctypes.c_ubyte
    ‘ h': ctypes.c_short     ‘ H': ctypes.c_ushort    ‘ i': ctypes.c_int       ‘ I': ctypes.c_uint
    ‘ l': ctypes.c_long,    ‘ L': ctypes.c_ulong     ‘ f': ctypes.c_float     ‘ d': ctypes.c_double

    ( 2 ) multiprocessing,Manager

    由 Manager()返回的 manager 提供 list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array 类型的支持。

    from multiprocessing import Process,Manager def f(d,l): d["name"] = "zhangyanlin" d["age"] = 18 d["Job"] = "pythoner" l.reverse() if __name__ == "__main__": with Manager() as man: d = man.dict() l = man.list(range(10)) p = Process(target=f,args=(d,l)) p.start() p.join() print(d) print(l)<br><br>输出:   {0.25: None, 1: '1', '2': 2}   [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

    Server process manager 比 shared memory 更灵活,因为它可以支持任意的对象类型。另外,一个单独的 manager 可以通过进程在网络上不同的计算机之间共享,不过他比 shared memory 要慢。

    2、进程池( Using a pool of workers )

    Pool 类描述了一个工作进程池,他有几种不同的方法让任务卸载工作进程。

    进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

    我们可以用 Pool 类创建一个进程池, 展开提交的任务给进程池。 例:

    #apply from multiprocessing import Pool import time def f(i): time.sleep(0.5) print(i) return i + 100 if __name__ == "__main__": pool = Pool(5) for i in range(1,31): pool.apply(func=f1,args=(i,)) #apply_async def f1(i): time.sleep(0.5) print(i) return i + 100 def f2(arg): print(arg) if __name__ == "__main__": pool = Pool(5) for i in range(1,31): pool.apply_async(func=f1,args=(i,),callback=f2) pool.close() pool.join()

    一个进程池对象可以控制工作进程池的哪些工作可以被提交,它支持超时和回调的异步结果,有一个类似 map 的实现。

    processes:使用的工作进程的数量,如果 processes 是 None 那么使用 os.cpu_count()返回的数量。
    initializer: 如果 initializer 是 None,那么每一个工作进程在开始的时候会调用 initializer(*initargs)。
    maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个心的工作进程来替代原进程,来让闲置的资源被释放。maxtasksperchild 默认是 None,意味着只要 Pool 存在工作进程就会一直存活。

    context: 用在制定工作进程启动时的上下文,一般使用 multiprocessing.Pool() 或者一个 context 对象的 Pool()方法来创建一个池,两种方法都适当的设置了 context

    注意:Pool 对象的方法只可以被创建 pool 的进程所调用。

    New in version 3.2: maxtasksperchild
    New in version 3.4: context

    进程池的方法

    apply(func[, args[, kwds]]) :使用 arg 和 kwds 参数调用 func 函数,结果返回前会一直阻塞,由于这个原因,apply_async()更适合并发执行,另外,func 函数仅被 pool 中的一个进程运行。

    apply_async(func[, args[, kwds[, callback[, error_callback]]]]) :apply()方法的一个变体,会返回一个结果对象。如果 callback 被指定,那么 callback 可以接收一个参数然后被调用,当结果准备好回调时会调用 callback,调用失败时,则用 error_callback 替换 callback。Callbacks 应被立即完成,否则处理结果的线程会被阻塞。

    close() : 阻止更多的任务提交到 pool,待任务完成后,工作进程会退出。

    terminate() : 不管任务是否完成,立即停止工作进程。在对 pool 对象进程垃圾回收的时候,会立即调用 terminate()。

    join() : wait 工作线程的退出,在调用 join()前,必须调用 close() or terminate()。这样是因为被终止的进程需要被父进程调用 wait ( join 等价与 wait ),否则进程会成为僵尸进程。

    map(func, iterable[, chunksize]) map_async(func, iterable[, chunksize[, callback[, error_callback]]]) imap(func, iterable[, chunksize]) imap_unordered(func, iterable[, chunksize]) starmap(func, iterable[, chunksize]) starmap_async(func, iterable[, chunksize[, callback[, error_back]]])

    协程

    线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。

    协程存在的意义:对于多线程应用,CPU 通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。

    协程的适用场景:当程序中存在大量不需要 CPU 的操作时( IO ),适用于协程;

    event loop 是协程执行的控制点, 如果你希望执行协程, 就需要用到它们。

    event loop 提供了如下的特性:

    注册、执行、取消延时调用(异步函数)
    创建用于通信的 client 和 server 协议(工具)
    创建和别的程序通信的子进程和协议(工具)
    把函数调用送入线程池中

    协程示例:

    import asyncio async def cor1(): print("COR1 start") await cor2() print("COR1 end") async def cor2(): print("COR2") loop = asyncio.get_event_loop() loop.run_until_complete(cor1()) loop.close()

    最后三行是重点。

    asyncio.get_event_loop() : asyncio 启动默认的 event loop
    run_until_complete() : 这个函数是阻塞执行的,知道所有的异步函数执行完成,
    close() : 关闭 event loop。

    1、greenlet

    import greenlet def fun1(): print("12") gr2.switch() print("56") gr2.switch() def fun2(): print("34") gr1.switch() print("78") gr1 = greenlet.greenlet(fun1) gr2 = greenlet.greenlet(fun2) gr1.switch()

    2、gevent

    gevent 属于第三方模块需要下载安装包

    pip3 install --upgrade pip3 pip3 install gevent import gevent def fun1(): print("www.baidu.com") # 第一步 gevent.sleep(0) print("end the baidu.com") # 第三步 def fun2(): print("www.zhihu.com") # 第二步 gevent.sleep(0) print("end th zhihu.com") # 第四步 gevent.joinall([ gevent.spawn(fun1), gevent.spawn(fun2), ])

    遇到 IO 操作自动切换:

    import gevent import requests def func(url): print("get: %s"%url) gevent.sleep(0) date =requests.get(url) ret = date.text print(url,len(ret)) gevent.joinall([ gevent.spawn(func, 'https://www.python.org/'), gevent.spawn(func, 'https://www.yahoo.com/'), gevent.spawn(func, 'https://github.com/'), ])
    1 条回复    2019-01-07 21:03:52 +08:00
    IC0ZB
        1
    IC0ZB  
       2019-01-07 21:03:52 +08:00
    网站上不去了,崩了吗
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5867 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 30ms UTC 02:43 PVG 10:43 LAX 19:43 JFK 22:43
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86