PyTorch 60 分钟入门教程 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
1722332572
V2EX    Torch

PyTorch 60 分钟入门教程

  •  
  •   1722332572 2018-12-11 11:26:21 +08:00 6651 次点击
    这是一个创建于 2497 天前的主题,其中的信息可能已经有所发展或是发生改变。
    什么是 PyTorch?
    PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群:

    NumPy 的替代品,可以利用 GPU 的性能进行计算。
    深度学习研究平台拥有足够的灵活性和速度
    开始学习
    Tensors (张量)
    Tensors 类似于 NumPy 的 ndarrays,同时 Tensors 可以使用 GPU 进行计算。

    from __future__ import print_function
    import torch
    构造一个 5×3 矩阵,不初始化。

    x = torch.epty(5, 3)
    print(x)
    输出:

    tensor(1.00000e-04 *
    [[-0.0000, 0.0000, 1.5135],
    [ 0.0000, 0.0000, 0.0000],
    [ 0.0000, 0.0000, 0.0000],
    [ 0.0000, 0.0000, 0.0000],
    [ 0.0000, 0.0000, 0.0000]])


    构造一个随机初始化的矩阵:

    x = torch.rand(5, 3)
    print(x)
    输出:

    tensor([[ 0.6291, 0.2581, 0.6414],
    [ 0.9739, 0.8243, 0.2276],
    [ 0.4184, 0.1815, 0.5131],
    [ 0.5533, 0.5440, 0.0718],
    [ 0.2908, 0.1850, 0.5297]])


    构造一个矩阵全为 0,而且数据类型是 long.

    Construct a matrix filled zeros and of dtype long:

    x = torch.zeros(5, 3, dtype=torch.long)
    print(x)
    输出:

    tensor([[ 0, 0, 0],
    [ 0, 0, 0],
    [ 0, 0, 0],
    [ 0, 0, 0],
    [ 0, 0, 0]])
    构造一个张量,直接使用数据:

    x = torch.tensor([5.5, 3])
    print(x)
    输出:

    tensor([ 5.5000, 3.0000])
    创建一个 tensor 基于已经存在的 tensor。

    x = x.new_ones(5, 3, dtype=torch.double)
    # new_* methods take in sizes
    print(x)

    x = torch.randn_like(x, dtype=torch.float)
    # override dtype!
    print(x)
    # result has the same size
    输出:

    tensor([[ 1., 1., 1.],
    [ 1., 1., 1.],
    [ 1., 1., 1.],
    [ 1., 1., 1.],
    [ 1., 1., 1.]], dtype=torch.float64)
    tensor([[-0.2183, 0.4477, -0.4053],
    [ 1.7353, -0.0048, 1.2177],
    [-1.1111, 1.0878, 0.9722],
    [-0.7771, -0.2174, 0.0412],
    [-2.1750, 1.3609, -0.3322]])
    获取它的维度信息:

    print(x.size())
    输出:

    torch.Size([5, 3])
    注意

    torch.Size 是一个元组,所以它支持左右的元组操作。

    操作
    在接下来的例子中,我们将会看到加法操作。

    加法: 方式 1

    y = torch.rand(5, 3)
    print(x + y)
    Out:

    tensor([[-0.1859, 1.3970, 0.5236],
    [ 2.3854, 0.0707, 2.1970],
    [-0.3587, 1.2359, 1.8951],
    [-0.1189, -0.1376, 0.4647],
    [-1.8968, 2.0164, 0.1092]])
    加法: 方式 2

    print(torch.add(x, y))
    Out:

    tensor([[-0.1859, 1.3970, 0.5236],
    [ 2.3854, 0.0707, 2.1970],
    [-0.3587, 1.2359, 1.8951],
    [-0.1189, -0.1376, 0.4647],
    [-1.8968, 2.0164, 0.1092]])
    加法: 提供一个输出 tensor 作为参数

    result = torch.empty(5, 3)
    torch.add(x, y, out=result)
    print(result)
    Out:

    tensor([[-0.1859, 1.3970, 0.5236],
    [ 2.3854, 0.0707, 2.1970],
    [-0.3587, 1.2359, 1.8951],
    [-0.1189, -0.1376, 0.4647],
    [-1.8968, 2.0164, 0.1092]])
    加法: in-place

    # adds x to y
    y.add_(x)
    print(y)
    Out:

    tensor([[-0.1859, 1.3970, 0.5236],
    [ 2.3854, 0.0707, 2.1970],
    [-0.3587, 1.2359, 1.8951],
    [-0.1189, -0.1376, 0.4647],
    [-1.8968, 2.0164, 0.1092]])
    Note

    注意

    任何使张量会发生变化的操作都有一个前缀 ‘_’。例如:x.copy_(y), x.t_(), 将会改变 x.

    你可以使用标准的 NumPy 类似的索引操作

    print(x[:, 1])
    Out:

    tensor([ 0.4477, -0.0048, 1.0878, -0.2174, 1.3609])
    改变大小:如果你想改变一个 tensor 的大小或者形状,你可以使用 torch.view:

    x = torch.randn(4, 4)
    y = x.view(16)
    z = x.view(-1, 8) # the size -1 is inferred from other dimensions
    print(x.size(), y.size(), z.size())
    Out:

    torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
    如果你有一个元素 tensor,使用 .item() 来获得这个 value。

    x = torch.randn(1)
    print(x)
    print(x.item())
    Out:

    tensor([ 0.9422])
    0.9422121644020081

    PyTorch 入门教程: http://pytorchchina.com/2018/06/25/what-is-pytorch/
    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2680 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 25ms UTC 14:53 PVG 22:53 LAX 07:53 JFK 10:53
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86