请教一个逆地理编码的 PostgresSQL 语句优化问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
liuzhedash
V2EX    PostgreSQL

请教一个逆地理编码的 PostgresSQL 语句优化问题

  •  
  •   liuzhedash 2018-11-19 11:32:30 +08:00 3043 次点击
    这是一个创建于 2520 天前的主题,其中的信息可能已经有所发展或是发生改变。

    一个内网项目,需要获取到距离 GPS 坐标最近的两条路,道路 polyline 保存在 PostgresSQL+PostGIS 数据库里。现在我的查询语句是这样的形式:

     SELECT name, st_distance ( STGeomFromText ('POINT(108.862531 34.288909)') :: geography, geom :: geography ) as distance, id, st_asgeojson(geom) FROM road1_polyline WHERE name is not null UNION SELECT name, st_distance ( ST_GeomFromText ('POINT(108.862531 34.288909)') :: geography, geom :: geography ) as distance , id, st_asgeojson(geom) FROM road2_polyline WHERE name is not null ORDER BY distance ASC LIMIT 100 

    总的数据记录数大概在 6w,执行时间 4-8s,explain 的输出如下:

    Limit (cost=155093.26..155093.51 rows=100 width=358) -> Sort (cost=155093.26..155226.28 rows=53207 width=358) Sort Key: (_st_distance('0101000020E6100000513239B533375B40914259F8FA244140'::geography, (national_highway_polyline_clip.geom)::geography, '0'::double precision, true)) -> HashAggregate (cost=152527.66..153059.73 rows=53207 width=358) Group Key: national_highway_polyline_clip.name, (_st_distance('0101000020E6100000513239B533375B40914259F8FA244140'::geography, (national_highway_polyline_clip.geom)::geography, '0'::double precision, true)), national_highway_polyline_clip.id, (st_asgeojson(national_highway_polyline_clip.geom, 15, 0)) -> Append (cost=0.00..151995.59 rows=53207 width=358) -> Seq Scan on national_highway_polyline_clip (cost=0.00..6681.75 rows=2381 width=54) Filter: (name IS NOT NULL) -> Seq Scan on country_road_polyline_clip (cost=0.00..18560.35 rows=6620 width=58) Filter: (name IS NOT NULL) -> Seq Scan on city_fast_road_polyline_clip (cost=0.00..508.69 rows=180 width=68) Filter: (name IS NOT NULL) -> Seq Scan on highway_polyline_clip (cost=0.00..7240.14 rows=2566 width=70) Filter: (name IS NOT NULL) -> Seq Scan on level_nine_road_polyline_clip (cost=0.00..6616.24 rows=2362 width=59) Filter: (name IS NOT NULL) -> Seq Scan on other_road2_polyline_clip (cost=0.00..16308.71 rows=5172 width=59) Filter: (name IS NOT NULL) -> Seq Scan on provincial_highway_polyline_clip (cost=0.00..13497.61 rows=4811 width=59) Filter: (name IS NOT NULL) -> Seq Scan on sub_country_road2_polyline_clip (cost=0.00..82050.03 rows=29115 width=59) Filter: (name IS NOT NULL) 

    求教如何优化?

    7 条回复    2018-11-19 16:31:16 +08:00
    shangfabao
        1
    shangfabao  
       2018-11-19 13:47:09 +08:00
    先把 st_asgeojson(geom)去了试试
    bobo9ok
        2
    bobo9ok  
       2018-11-19 13:51:02 +08:00
    可以把铁路之类无关道路信息过滤, 根据点经纬度设定一个查询范围(缓冲区)
    hws8033856
        4
    hws8033856  
       2018-11-19 14:48:05 +08:00
    大概思路是先设置一个查询缓冲区,将查询范围限制在一个区域内,可以参考下文:
    https://www.jianshu.com/p/42e74122b9ac
    luozic
        5
    luozic  
       2018-11-19 15:05:35 +08:00
    liuzhedash
        6
    liuzhedash  
    OP
       2018-11-19 16:29:43 +08:00
    谢谢大家的提示。

    @shangfabao #1
    有道理,确实不应该在这个阶段获取 geojson

    @bobo9ok #2
    过滤我也想了,但是没有合适的筛选条件

    @hws8033856 #4
    这是我最早的思路,但是这需要重新构造一个表结构,我还是希望尽可能简单地在查询层面提高效率

    @luozic #5
    惊了老哥,太全了
    liuzhedash
        7
    liuzhedash  
    OP
       2018-11-19 16:31:16 +08:00
    @reus #3

    谢谢,初步测试这个非常靠谱,postgis 中<->运算符+order by 可以有索引加成
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2911 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 31ms UTC 14:13 PVG 22:13 LAX 07:13 JFK 10:13
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86