Tensorflow 笔记 CNN+SVC - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
LittleUqeer
V2EX    TensorFlow

Tensorflow 笔记 CNN+SVC

  •  
  •   LittleUqeer 2017-01-10 14:51:20 +08:00 6304 次点击
    这是一个创建于 3195 天前的主题,其中的信息可能已经有所发展或是发生改变。

    结构 5 层卷积 - 3 层全连接 使用 SVM 取代 softmax 进行预测; 计算量有点大,大家看看即可。 卷积网络结构可以参考 AlexNet

    %%time import numpy as np import matplotlib.pylab as plt %matplotlib inline import tensorflow as tf from sklearn.cross_validation import train_test_split fac = np.load('F:/Quotes/fac16.npy').astype(np.float32) ret = np.load('F:/Quotes/ret16.npy').astype(np.float32) train_X, test_X, train_Y, test_Y = train_test_split(fac, ret, test_size= 0.4) print ('训练集 /总数据集 %.3f'%(len(train_X)/len(fac))) 
    # Parameters learning_rate = 0.001 # 学习速率, training_iters = 20 # 训练次数 batch_size = 1024 # 每次计算数量 批次大小 display_step = 10 # 显示步长 # Network Parameters n_input = 40*17 # 40 天×17 多因子 n_classes = 7 # 根据涨跌幅度分成 7 类别 # 这里注意要使用 one-hot 格式,也就是如果分类如 3 类 -1,0,1 则需要 3 列来表达这个分类结果, 3 类是-1 0 1 然后是哪类,哪类那一行为 1 否则为 0 dropout = 0.5# Dropout, probability to keep units # tensorflow 图 Graph 输入 input ,这里的占位符均为输入 x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) keep_prob = tf.placeholder(tf.float32) #dropout (keep probability) # 2 层 CNN 提取特征向量 def CNN_Net_two(x,weights,biases,dropout=0.8,m=1): # layer hidden 1 x = tf.reshape(x, shape=[-1,40,17,1]) x = tf.nn.conv2d(x, weights['wc1'], strides=[1,m,m,1],padding='SAME') x = tf.nn.bias_add(x,biases['bc1']) x = tf.nn.relu(x) x = tf.nn.local_response_normalization(x, depth_radius=5, bias=1.0, alpha=0.001/9.0) x = tf.nn.dropout(x,0.3) # layer hidden 2 x = tf.nn.conv2d(x, weights['wc2'], strides=[1,m,m,1],padding='SAME') x = tf.nn.bias_add(x,biases['bc2']) x = tf.nn.relu(x) x = tf.nn.local_response_normalization(x, depth_radius=5, bias=1.0, alpha=0.001/9.0) x = tf.nn.dropout(x,0.3) # layer hidden 3 x = tf.nn.conv2d(x, weights['wc3'], strides=[1,m,m,1],padding='SAME') x = tf.nn.bias_add(x,biases['bc3']) x = tf.nn.relu(x) x = tf.nn.local_response_normalization(x, depth_radius=5, bias=1.0, alpha=0.001/9.0) x = tf.nn.dropout(x,0.3) # layer hidden 4 x = tf.nn.conv2d(x, weights['wc4'], strides=[1,m,m,1],padding='SAME') x = tf.nn.bias_add(x,biases['bc4']) x = tf.nn.relu(x) x = tf.nn.local_response_normalization(x, depth_radius=5, bias=1.0, alpha=0.001/9.0) x = tf.nn.dropout(x,0.3) # layer hidden 5 x = tf.nn.conv2d(x, weights['wc5'], strides=[1,m,m,1],padding='SAME') x = tf.nn.bias_add(x,biases['bc5']) x = tf.nn.relu(x) x = tf.nn.local_response_normalization(x, depth_radius=5, bias=1.0, alpha=0.001/9.0) x = tf.nn.dropout(x,0.3) #print (x.get_shape().as_list()) # 全连接层 1 x = tf.reshape(x,[-1,weights['wd1'].get_shape().as_list()[0]]) x = tf.add(tf.matmul(x,weights['wd1']),biases['bd1']) x = tf.nn.relu(x) x = tf.nn.dropout(x,dropout) #print (x.get_shape().as_list()) # 全连接层 2 x = tf.reshape(x,[-1,weights['wd2'].get_shape().as_list()[0]]) x = tf.add(tf.matmul(x,weights['wd2']),biases['bd2']) x = tf.nn.relu(x) x = tf.nn.dropout(x,dropout) #print (x.get_shape().as_list()) # 全连接层 3 x = tf.reshape(x,[-1,weights['wd3'].get_shape().as_list()[0]]) x = tf.add(tf.matmul(x,weights['wd3']),biases['bd3']) x = tf.nn.relu(x) x = tf.nn.dropout(x,dropout) #print (x.get_shape().as_list()) t = tf.add(tf.matmul(x,weights['out']),biases['out']) #print (t.get_shape().as_list()) # 返回两个数值, t 用于 softmax 分类, x 用于提取 CNN 处理的数据,也就是经过卷积处理的特征向量。 return t,x # Store layers weight & bias weights = { 'wc1': tf.Variable(tf.random_normal([10, 5, 1, 64])), 'wc2': tf.Variable(tf.random_normal([10, 5, 64, 128])), 'wc3': tf.Variable(tf.random_normal([10, 5, 128, 256])), 'wc4': tf.Variable(tf.random_normal([10, 5, 256, 512])), 'wc5': tf.Variable(tf.random_normal([10, 5, 512, 1024])), 'wd1': tf.Variable(tf.random_normal([40*17*1024, 1024])), 'wd2': tf.Variable(tf.random_normal([1024, 256])), 'wd3': tf.Variable(tf.random_normal([256, 32])), 'out': tf.Variable(tf.random_normal([32, n_classes])) } biases = { 'bc1': tf.Variable(tf.random_normal([64])), 'bc2': tf.Variable(tf.random_normal([128])), 'bc3': tf.Variable(tf.random_normal([256])), 'bc4': tf.Variable(tf.random_normal([512])), 'bc5': tf.Variable(tf.random_normal([1024])), 'bd1': tf.Variable(tf.random_normal([1024])), 'bd2': tf.Variable(tf.random_normal([256])), 'bd3': tf.Variable(tf.random_normal([32])), 'out': tf.Variable(tf.random_normal([n_classes])) } # 模型优化 pred,tmp = CNN_Net_two(x,weights,biases,dropout=keep_prob) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred,y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) correct_pred = tf.equal(tf.argmax(pred,1),tf.arg_max(y,1)) # tf.argmax(input,axis=None) 由于标签的数据格式是 -1 0 1 3 列,该语句是表示返回值最大也就是 1 的索引,两个索引相同则是预测正确。 accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 更改数据格式,降低均值 init = tf.global_variables_initializer() 

    计算保存模型

    saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) # for step in range(300): for step in range(1): trl=int(len(train_X)/batch_size) for i in range(trl): print (i,'--',trl) batch_x = train_X[i*batch_size:(i+1)*batch_size] batch_y = train_Y[i*batch_size:(i+1)*batch_size] sess.run(optimizer,feed_dict={x:batch_x,y:batch_y,keep_prob:0.5}) loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,y: batch_y,keep_prob: 1.}) print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \ "{:.6f}".format(loss) + ", Training Accuracy= " + \ "{:.5f}".format(acc)) save_path = saver.save(sess,'F:/Quotes/test_var.ckpt') print ('保持变量') print("Optimization Finished!") sess.close() 

    读取模型,进行预测

    saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) saver.restore(sess,'F:/Quotes/test_var.ckpt') trainX_COnvolution= sess.run(tmp, feed_dict={x:train_X, keep_prob:1.}) # 经过卷积处理的特征向量 nn_score = sess.run(accuracy,feed_dict={x:train_X, keep_prob:1.}) nn_score1 = sess.run(accuracy,feed_dict={x:test_X, keep_prob:1.}) print(nn_score,'---',nn_score1) sess.close() 

    one-hot 向量转换为列向量

    # train_Y ol_train_Y = [] for i in range(len(train_Y)): t = train_Y[i] arg = np.argmax(t) ol_train_Y.append(arg) # softmax_pred ol_softmax_pred = [] for i in range(len(softmax_pred)): t = softmax_pred [i] arg = np.argmax(t) ol_softmax_pred.append(arg) 

    SVM 预测

    from sklearn.svm import SVC clf = SVC(C=0.9,gamma=1.0,decision_function_shape='ovo') clf.fit(trainX_Convolution, ol_train_Y) c = clf.predict(trainX_Convolution) print ('CNN 预测',(np.corrcoef(a,c)[0][1])) 

    集成算法比较参见: https://uqer.io/community/share/58562a9f6a5e6d0052291ebe

    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     900 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 26ms UTC 20:52 PVG 04:52 LAX 13:52 JFK 16:52
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86